PPARgamma, Epilepsy and Therapeutics

Project: Research project

Project Details

Description

DESCRIPTION (provided by applicant): Approximately 30% of people with epilepsy do not achieve adequate seizure control with current anti-seizure drugs (ASDs). This medically refractory population has severe seizure phenotypes and is at greatest risk of sudden unexpected death in epilepsy (SUDEP). Therefore, there is an urgent need for detailed studies identifying new therapeutic targets with potential disease-modifying outcomes. Studies indicate that the refractory epileptic brain is chronically inflamed with persistent mitochondrial dysfunction. Recent evidence supports the hypothesis that both factors can increase the excitability of epileptic networks and exacerbate seizure frequency and severity in a pathological cycle. Thus, effective disease-modifying interventions will most likely interrupt this loop. The nuclear transcription factor peroxisome proliferator activated receptor gamma (PPARy) regulates genes in anti-inflammatory, anti-oxidant and mitochondrial pathways. Preliminary experiments in chronically epileptic mice indicate impressive anti-seizure efficacy. We hypothesize that (i) activation of brain PPARy in epileptic animals will have disease modifying effects that provide long-term benefits, and (ii) determining PPARy mechanisms will reveal additional therapeutic targets. Using a mouse model of developmental epilepsy, we propose to (1) elucidate the cellular, synaptic and network mechanisms by which PPARy activation restores normal excitability; (2) demonstrate the significant contribution of mitochondrial health in pathologic synaptic activity in epileptic brain; (3) demonstrate inflammatory regulation of PPARy in epileptic brain; and (4) determine whether PPARy activation extends the lifespan of severely epileptic animals. The proposed studies, spanning in vivo and in vitro systems using a combination of techniques in molecular biology, electrophysiology, microscopy, bioenergetics and pharmacology, will provide insight into the interplay of seizures, mitochondria, inflammation and homeostatic mechanisms. The results will have tremendous, immediate translational potential because PPARy agonists are currently used for clinical treatment of Type II Diabetes. PPARy is under investigation as treatment for a wide variety of other neurological diseases with cell death and inflammation as common denominators; therefore, the results of this proposal will have a broad impact.
StatusFinished
Effective start/end date9/30/146/30/20

Funding

  • National Institute of Neurological Disorders and Stroke: $318,281.00
  • National Institute of Neurological Disorders and Stroke: $309,921.00
  • National Institute of Neurological Disorders and Stroke: $282,450.00
  • National Institute of Neurological Disorders and Stroke: $318,281.00
  • National Institute of Neurological Disorders and Stroke: $318,281.00

Fingerprint

Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.