A mouse model of MIR-96, MIR-182 and MIR-183 misexpression implicates MIRNAs in cochlear cell fate and homeostasis

Michael D. Weston, Shikha Tarang, Marsha L. Pierce, Umesh Pyakurel, Sonia M. Rocha-Sanchez, Jo Ann McGee, Edward J. Walsh, Garrett A. Soukup

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


Germline mutations in Mir96, one of three co-expressed polycistronic miRNA genes (Mir96, Mir182, Mir183), cause hereditary hearing loss in humans and mice. Transgenic FVB/NCrl-Tg(GFAP-Mir183,Mir96,Mir182)MDW1 mice (Tg1MDW), which overexpress this neurosensory-specific miRNA cluster in the inner ear, were developed as a model system to identify, in the aggregate, target genes and biologic processes regulated by the miR-183 cluster. Histological assessments demonstrate Tg1MDW/1MDW homozygotes have a modest increase in cochlear inner hair cells (IHCs). Affymetrix mRNA microarray data analysis revealed that downregulated genes in P5 Tg1MDW/1MDW cochlea are statistically enriched for evolutionarily conserved predicted miR-96, miR-182 or miR-183 target sites. ABR and DPOAE tests from 18 days to 3 months of age revealed that Tg1MDW/1MDW homozygotes develop progressive neurosensory hearing loss that correlates with histologic assessments showing massive losses of both IHCs and outer hair cells (OHCs). This mammalian miRNA misexpression model demonstrates a potency and specificity of cochlear homeostasis for one of the dozens of endogenously co-expressed, evolutionally conserved, small non-protein coding miRNA families. It should be a valuable tool to predict and elucidate miRNA-regulated genes and integrated functional gene expression networks that significantly influence neurosensory cell differentiation, maturation and homeostasis.

Original languageEnglish (US)
Article number3569
JournalScientific Reports
Issue number1
StatePublished - Dec 1 2018

All Science Journal Classification (ASJC) codes

  • General


Dive into the research topics of 'A mouse model of MIR-96, MIR-182 and MIR-183 misexpression implicates MIRNAs in cochlear cell fate and homeostasis'. Together they form a unique fingerprint.

Cite this