TY - JOUR
T1 - Abdominal vagal mediation of the satiety effects of CCK in rats
AU - Reidelberger, Roger D.
AU - Hernandez, Jessica
AU - Fritzsch, Bernd
AU - Hulce, Martin
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2004/6
Y1 - 2004/6
N2 - CCK type 1 (CCK1) receptor antagonists differing in blood-brain barrier permeability were used to test the hypothesis that satiety is mediated in part by CCK action at CCK1 receptors on vagal sensory nerves innervating the small intestine. Devazepide penetrates the blood-brain barrier; A-70104, the dicyclohexylammonium salt of Nα-3-quinolinoyl-D-Glu-N,N-dipentylamide, does not. At dark onset, non-food-deprived control rats and rats with subdiaphragmatic vagotomies received a bolus injection of devazepide (2.5 μmol/kg iv) or a 3-h infusion of A-70104 (3 μmol·kg -1·h-1 iv) either alone or coadministered with a 2-h intragastric infusion of peptone (0.75 or 1 g/h). Food intake was determined from continuous computer recordings of changes in food bowl weight. In control rats both antagonists stimulated food intake and attenuated the anorexic response to intragastric infusion of peptone. In contrast, only devazepide was effective in stimulating food intake in vagotomized rats. Thus endogenous CCK appears to act both at CCK1 receptors beyond the blood-brain barrier and by a CCK1 receptor-mediated mechanism involving abdominal vagal nerves to inhibit food intake.
AB - CCK type 1 (CCK1) receptor antagonists differing in blood-brain barrier permeability were used to test the hypothesis that satiety is mediated in part by CCK action at CCK1 receptors on vagal sensory nerves innervating the small intestine. Devazepide penetrates the blood-brain barrier; A-70104, the dicyclohexylammonium salt of Nα-3-quinolinoyl-D-Glu-N,N-dipentylamide, does not. At dark onset, non-food-deprived control rats and rats with subdiaphragmatic vagotomies received a bolus injection of devazepide (2.5 μmol/kg iv) or a 3-h infusion of A-70104 (3 μmol·kg -1·h-1 iv) either alone or coadministered with a 2-h intragastric infusion of peptone (0.75 or 1 g/h). Food intake was determined from continuous computer recordings of changes in food bowl weight. In control rats both antagonists stimulated food intake and attenuated the anorexic response to intragastric infusion of peptone. In contrast, only devazepide was effective in stimulating food intake in vagotomized rats. Thus endogenous CCK appears to act both at CCK1 receptors beyond the blood-brain barrier and by a CCK1 receptor-mediated mechanism involving abdominal vagal nerves to inhibit food intake.
UR - http://www.scopus.com/inward/record.url?scp=2442691775&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=2442691775&partnerID=8YFLogxK
U2 - 10.1152/ajpregu.00646.2003
DO - 10.1152/ajpregu.00646.2003
M3 - Article
C2 - 14701717
AN - SCOPUS:2442691775
VL - 286
SP - R1005-R1012
JO - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
JF - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
SN - 0363-6119
IS - 6 55-6
ER -