Adult-born neurons modify excitatory synaptic transmission to existing neurons

Elena W. Adlaf, Ryan J. Vaden, Anastasia J. Niver, Allison F. Manuel, Vincent C. Onyilo, Matheus T. Araujo, Cristina V. Dieni, Hai T. Vo, Gwendalyn D. King, Jacques I. Wadiche, Linda Overstreet-Wadiche

Research output: Contribution to journalArticlepeer-review

37 Scopus citations

Abstract

Adult-born neurons are continually produced in the dentate gyrus but it is unclear whether synaptic integration of new neurons affects the pre-existing circuit. Here we investigated how manipulating neurogenesis in adult mice alters excitatory synaptic transmission to mature dentate neurons. Enhancing neurogenesis by conditional deletion of the pro-apoptotic gene Bax in stem cells reduced excitatory postsynaptic currents (EPSCs) and spine density in mature neurons, whereas genetic ablation of neurogenesis increased EPSCs in mature neurons. Unexpectedly, we found that Bax deletion in developing and mature dentate neurons increased EPSCs and prevented neurogenesis-induced synaptic suppression. Together these results show that neurogenesis modifies synaptic transmission to mature neurons in a manner consistent with a redistribution of pre-existing synapses to newly integrating neurons and that a non-apoptotic function of the Bax signaling pathway contributes to ongoing synaptic refinement within the dentate circuit.

Original languageEnglish (US)
Article numbere19886
JournaleLife
Volume6
DOIs
StatePublished - Jan 30 2017
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Neuroscience(all)
  • Immunology and Microbiology(all)
  • Biochemistry, Genetics and Molecular Biology(all)

Fingerprint

Dive into the research topics of 'Adult-born neurons modify excitatory synaptic transmission to existing neurons'. Together they form a unique fingerprint.

Cite this