Abstract
We report the anion photoelectron spectra of deprotonated thymine and cytosine at 3.496 eV photodetachment energy using velocity-mapped imaging. The photoelectron spectra of both species exhibit bands resulting from detachment transitions between the anion ground state and the ground state of the neutral radical. Franck-Condon simulations identify the anion isomers that contribute to the observed photoelectron spectrum. For both thymine and cytosine, the photoelectron spectra are consistent with anions formed by removal of a proton from the N atom that normally attaches to the sugar in the nucleotide (N1). For deprotonated thymine, the photoelectron spectrum shows a band due to a ring breathing vibration excited during the photodetachment transition. The electron affinity for the dehydrogenated thymine radical is determined as 3.250 ± 0.015 eV. For deprotonated cytosine, the photoelectron spectrum lacks any resolved structure and the electron affinity of the dehydrogenated cytosine radical is determined to be 3.037 ± 0.015 eV. By combining the electron affinity with previously measured gas phase acidities of thymine and cytosine, we determine the bond dissociation energy for the N-H bond that is broken.
Original language | English (US) |
---|---|
Pages (from-to) | 3291-3297 |
Number of pages | 7 |
Journal | Physical Chemistry Chemical Physics |
Volume | 9 |
Issue number | 25 |
DOIs | |
State | Published - 2007 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Physics and Astronomy(all)
- Physical and Theoretical Chemistry