Bilateral blockade of MEK- and PI3K-mediated pathways downstream of mutant KRAS as a treatment approach for peritoneal mucinous malignancies

Murali R. Kuracha, Peter Thomas, Brian W. Loggie, Venkatesh Govindarajan

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Mucinous colorectal adenocarcinomas (MCAs) are clinically and morphologically distinct from nonmucinous colorectal cancers (CRCs), show a distinct spectrum of genetic alterations (higher KRAS mutations, lower p53, high MUC2), exhibit more aggressive behavior (more prone to peritoneal dissemination and lymph node involvement) and are associated with poorer response to chemotherapy with limited treatment options. Here, we report the effectiveness of combinatorial targeting of two KRAS-mediated parallel pathways in reducing MUC2 production and mucinous tumor growth in vitro and in vivo. By knockdown of mutant KRAS we show that, mutant KRAS (a) is necessary for MUC2 production in vitro and (b) synergistically engages PI3K/AKT and MEK/ERK pathways to maintain MUC2 expression in MCA cells. These results define a novel and a previously undescribed role for oncogenic KRAS in mucinous cancers. MCA cells were sensitive to MEK inhibition suggesting cellular dependence (‘addiction’) of KRAS-mutant MCA cells on hyperactivation of the MEK-driven pathway. Interestingly, MCA cells, though initially sensitive, were later resistant to PI3K single agent inhibition. Our studies suggest that this resistance involves dynamic rewiring of signaling circuits mediated through relief of RTK inhibition and MEK-ERK rebound activation. This resistance however, could be overcome by co-targeting of PI3K and MEK. Our studies thus provide a rational basis for MEK- and PI3K-targeted combination therapy for not only KRAS mutant MCA but also for other related mucinous neoplasms that overproduce MUC2 and have a high rate of KRAS mutations such as pseudomyxoma peritonei.

Original languageEnglish (US)
Article numbere0179510
JournalPLoS One
Volume12
Issue number6
DOIs
StatePublished - Jun 1 2017

Fingerprint

Mucinous Adenocarcinoma
Mitogen-Activated Protein Kinase Kinases
phosphatidylinositol 3-kinase
adenocarcinoma
Phosphatidylinositol 3-Kinases
mutants
Neoplasms
neoplasms
Therapeutics
Pseudomyxoma Peritonei
cells
mutation
Chemotherapy
MAP Kinase Signaling System
Mutation Rate
colorectal neoplasms
drug therapy
lymph nodes
aggression
Tumors

All Science Journal Classification (ASJC) codes

  • Medicine(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

Cite this

Bilateral blockade of MEK- and PI3K-mediated pathways downstream of mutant KRAS as a treatment approach for peritoneal mucinous malignancies. / Kuracha, Murali R.; Thomas, Peter; Loggie, Brian W.; Govindarajan, Venkatesh.

In: PLoS One, Vol. 12, No. 6, e0179510, 01.06.2017.

Research output: Contribution to journalArticle

@article{59921409d6194d6f98f66d24c40adda8,
title = "Bilateral blockade of MEK- and PI3K-mediated pathways downstream of mutant KRAS as a treatment approach for peritoneal mucinous malignancies",
abstract = "Mucinous colorectal adenocarcinomas (MCAs) are clinically and morphologically distinct from nonmucinous colorectal cancers (CRCs), show a distinct spectrum of genetic alterations (higher KRAS mutations, lower p53, high MUC2), exhibit more aggressive behavior (more prone to peritoneal dissemination and lymph node involvement) and are associated with poorer response to chemotherapy with limited treatment options. Here, we report the effectiveness of combinatorial targeting of two KRAS-mediated parallel pathways in reducing MUC2 production and mucinous tumor growth in vitro and in vivo. By knockdown of mutant KRAS we show that, mutant KRAS (a) is necessary for MUC2 production in vitro and (b) synergistically engages PI3K/AKT and MEK/ERK pathways to maintain MUC2 expression in MCA cells. These results define a novel and a previously undescribed role for oncogenic KRAS in mucinous cancers. MCA cells were sensitive to MEK inhibition suggesting cellular dependence (‘addiction’) of KRAS-mutant MCA cells on hyperactivation of the MEK-driven pathway. Interestingly, MCA cells, though initially sensitive, were later resistant to PI3K single agent inhibition. Our studies suggest that this resistance involves dynamic rewiring of signaling circuits mediated through relief of RTK inhibition and MEK-ERK rebound activation. This resistance however, could be overcome by co-targeting of PI3K and MEK. Our studies thus provide a rational basis for MEK- and PI3K-targeted combination therapy for not only KRAS mutant MCA but also for other related mucinous neoplasms that overproduce MUC2 and have a high rate of KRAS mutations such as pseudomyxoma peritonei.",
author = "Kuracha, {Murali R.} and Peter Thomas and Loggie, {Brian W.} and Venkatesh Govindarajan",
year = "2017",
month = "6",
day = "1",
doi = "10.1371/journal.pone.0179510",
language = "English (US)",
volume = "12",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "6",

}

TY - JOUR

T1 - Bilateral blockade of MEK- and PI3K-mediated pathways downstream of mutant KRAS as a treatment approach for peritoneal mucinous malignancies

AU - Kuracha, Murali R.

AU - Thomas, Peter

AU - Loggie, Brian W.

AU - Govindarajan, Venkatesh

PY - 2017/6/1

Y1 - 2017/6/1

N2 - Mucinous colorectal adenocarcinomas (MCAs) are clinically and morphologically distinct from nonmucinous colorectal cancers (CRCs), show a distinct spectrum of genetic alterations (higher KRAS mutations, lower p53, high MUC2), exhibit more aggressive behavior (more prone to peritoneal dissemination and lymph node involvement) and are associated with poorer response to chemotherapy with limited treatment options. Here, we report the effectiveness of combinatorial targeting of two KRAS-mediated parallel pathways in reducing MUC2 production and mucinous tumor growth in vitro and in vivo. By knockdown of mutant KRAS we show that, mutant KRAS (a) is necessary for MUC2 production in vitro and (b) synergistically engages PI3K/AKT and MEK/ERK pathways to maintain MUC2 expression in MCA cells. These results define a novel and a previously undescribed role for oncogenic KRAS in mucinous cancers. MCA cells were sensitive to MEK inhibition suggesting cellular dependence (‘addiction’) of KRAS-mutant MCA cells on hyperactivation of the MEK-driven pathway. Interestingly, MCA cells, though initially sensitive, were later resistant to PI3K single agent inhibition. Our studies suggest that this resistance involves dynamic rewiring of signaling circuits mediated through relief of RTK inhibition and MEK-ERK rebound activation. This resistance however, could be overcome by co-targeting of PI3K and MEK. Our studies thus provide a rational basis for MEK- and PI3K-targeted combination therapy for not only KRAS mutant MCA but also for other related mucinous neoplasms that overproduce MUC2 and have a high rate of KRAS mutations such as pseudomyxoma peritonei.

AB - Mucinous colorectal adenocarcinomas (MCAs) are clinically and morphologically distinct from nonmucinous colorectal cancers (CRCs), show a distinct spectrum of genetic alterations (higher KRAS mutations, lower p53, high MUC2), exhibit more aggressive behavior (more prone to peritoneal dissemination and lymph node involvement) and are associated with poorer response to chemotherapy with limited treatment options. Here, we report the effectiveness of combinatorial targeting of two KRAS-mediated parallel pathways in reducing MUC2 production and mucinous tumor growth in vitro and in vivo. By knockdown of mutant KRAS we show that, mutant KRAS (a) is necessary for MUC2 production in vitro and (b) synergistically engages PI3K/AKT and MEK/ERK pathways to maintain MUC2 expression in MCA cells. These results define a novel and a previously undescribed role for oncogenic KRAS in mucinous cancers. MCA cells were sensitive to MEK inhibition suggesting cellular dependence (‘addiction’) of KRAS-mutant MCA cells on hyperactivation of the MEK-driven pathway. Interestingly, MCA cells, though initially sensitive, were later resistant to PI3K single agent inhibition. Our studies suggest that this resistance involves dynamic rewiring of signaling circuits mediated through relief of RTK inhibition and MEK-ERK rebound activation. This resistance however, could be overcome by co-targeting of PI3K and MEK. Our studies thus provide a rational basis for MEK- and PI3K-targeted combination therapy for not only KRAS mutant MCA but also for other related mucinous neoplasms that overproduce MUC2 and have a high rate of KRAS mutations such as pseudomyxoma peritonei.

UR - http://www.scopus.com/inward/record.url?scp=85021296366&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85021296366&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0179510

DO - 10.1371/journal.pone.0179510

M3 - Article

VL - 12

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 6

M1 - e0179510

ER -