Coined quantum walks on weighted graphs

Research output: Contribution to journalArticlepeer-review

13 Scopus citations


We define a discrete-time, coined quantum walk on weighted graphs that is inspired by Szegedy's quantum walk. Using this, we prove that many lackadaisical quantum walks, where each vertex has l integer self-loops, can be generalized to a quantum walk where each vertex has a single self-loop of real-valued weight l. We apply this real-valued lackadaisical quantum walk to two problems. First, we analyze it on the line or one-dimensional lattice, showing that it is exactly equivalent to a continuous deformation of the three-state Grover walk with faster ballistic dispersion. Second, we generalize Grover's algorithm, or search on the complete graph, to have a weighted self-loop at each vertex, yielding an improved success probability when 1 < 3+2 √2 ≈ 5.828.

Original languageEnglish (US)
Article number475301
JournalJournal of Physics A: Mathematical and Theoretical
Issue number47
StatePublished - Oct 25 2017

All Science Journal Classification (ASJC) codes

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Modeling and Simulation
  • Mathematical Physics
  • Physics and Astronomy(all)


Dive into the research topics of 'Coined quantum walks on weighted graphs'. Together they form a unique fingerprint.

Cite this