Collision-energy dependence of pt correlations in Au + Au collisions at energies available at the BNL Relativistic Heavy Ion Collider

STAR Collaboration

Research output: Contribution to journalArticle

1 Scopus citations

Abstract

We present two-particle pt correlations as a function of event centrality for Au+Au collisions at sNN=7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV at the Relativistic Heavy Ion Collider using the STAR detector. These results are compared to previous measurements from CERES at the Super Proton Synchrotron and from ALICE at the Large Hadron Collider. The data are compared with UrQMD model calculations and with a model based on a Boltzmann-Langevin approach incorporating effects from thermalization. The relative dynamical correlations for Au+Au collisions at sNN=200 GeV show a power-law dependence on the number of participant nucleons and agree with the results for Pb+Pb collisions at sNN=2.76TeV from ALICE. As the collision energy is lowered from sNN=200 to 7.7 GeV, the centrality dependence of the relative dynamical correlations departs from the power-law behavior observed at the higher collision energies. In central collisions, the relative dynamical correlations increase with collision energy up to sNN=200 GeV in contrast to previous measurements that showed little dependence on the collision energy.

Original languageEnglish (US)
Article number044918
JournalPhysical Review C
Volume99
Issue number4
DOIs
StatePublished - Apr 26 2019

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics

Fingerprint Dive into the research topics of 'Collision-energy dependence of pt correlations in Au + Au collisions at energies available at the BNL Relativistic Heavy Ion Collider'. Together they form a unique fingerprint.

  • Cite this