Core requirements for glmS ribozyme self-cleavage reveal a putative pseudoknot structure

Research output: Contribution to journalArticle

24 Citations (Scopus)

Abstract

The glmS ribozyme is a self-cleaving RNA catalyst that resides in the 5′-untranslated region of glmS mRNA in certain bacteria. The ribozyme is specifically activated by glucosamine-6-phosphate (GlcN6P), the metabolic product of the GlmS protein, and is thus proposed to provide a feedback mechanism of riboswitch regulation. Both phylogenetic and biochemical analyses of the glmS ribozyme have established a highly conserved core sequence and secondary structure required for GlcN6P-dependent self-cleavage. However, the high degree of nucleotide conservation offers few clues regarding the higher-order structural organization of the catalytic core. To further investigate core ribozyme structure, minimal 'consensus-type' glmS ribozymes that retain GlcN6P-dependent activity were produced. Mutational analyses of consensus-type glmS ribozymes support a model for core ribozyme folding through a pseudoknot structure formed by the interaction of two highly conserved sequence segments. Moreover, GlcN6P-dependent function is demonstrated for bimolecular constructs in which substrate interaction with the ribozyme is minimally comprised of sequence representing that involved in putative pseudoknot formation. These studies suggest that the glmS ribozyme adopts an intricate multi-strand catalytic core through the formation of a pseudoknot structure, and provide a refined model for further considering GlcN6P interaction and GlcN6P-dependent ribozyme function.

Original languageEnglish
Pages (from-to)968-975
Number of pages8
JournalNucleic Acids Research
Volume34
Issue number3
DOIs
StatePublished - 2006

Fingerprint

Catalytic RNA
Conserved Sequence
Catalytic Domain
Riboswitch
5' Untranslated Regions
glucosamine 6-phosphate
Nucleotides
RNA
Bacteria

All Science Journal Classification (ASJC) codes

  • Genetics

Cite this

Core requirements for glmS ribozyme self-cleavage reveal a putative pseudoknot structure. / Soukup, Garrett.

In: Nucleic Acids Research, Vol. 34, No. 3, 2006, p. 968-975.

Research output: Contribution to journalArticle

@article{c21dfbf68dcf43c2a092b461a98a7364,
title = "Core requirements for glmS ribozyme self-cleavage reveal a putative pseudoknot structure",
abstract = "The glmS ribozyme is a self-cleaving RNA catalyst that resides in the 5′-untranslated region of glmS mRNA in certain bacteria. The ribozyme is specifically activated by glucosamine-6-phosphate (GlcN6P), the metabolic product of the GlmS protein, and is thus proposed to provide a feedback mechanism of riboswitch regulation. Both phylogenetic and biochemical analyses of the glmS ribozyme have established a highly conserved core sequence and secondary structure required for GlcN6P-dependent self-cleavage. However, the high degree of nucleotide conservation offers few clues regarding the higher-order structural organization of the catalytic core. To further investigate core ribozyme structure, minimal 'consensus-type' glmS ribozymes that retain GlcN6P-dependent activity were produced. Mutational analyses of consensus-type glmS ribozymes support a model for core ribozyme folding through a pseudoknot structure formed by the interaction of two highly conserved sequence segments. Moreover, GlcN6P-dependent function is demonstrated for bimolecular constructs in which substrate interaction with the ribozyme is minimally comprised of sequence representing that involved in putative pseudoknot formation. These studies suggest that the glmS ribozyme adopts an intricate multi-strand catalytic core through the formation of a pseudoknot structure, and provide a refined model for further considering GlcN6P interaction and GlcN6P-dependent ribozyme function.",
author = "Garrett Soukup",
year = "2006",
doi = "10.1093/nar/gkj497",
language = "English",
volume = "34",
pages = "968--975",
journal = "Nucleic Acids Research",
issn = "0305-1048",
publisher = "Oxford University Press",
number = "3",

}

TY - JOUR

T1 - Core requirements for glmS ribozyme self-cleavage reveal a putative pseudoknot structure

AU - Soukup, Garrett

PY - 2006

Y1 - 2006

N2 - The glmS ribozyme is a self-cleaving RNA catalyst that resides in the 5′-untranslated region of glmS mRNA in certain bacteria. The ribozyme is specifically activated by glucosamine-6-phosphate (GlcN6P), the metabolic product of the GlmS protein, and is thus proposed to provide a feedback mechanism of riboswitch regulation. Both phylogenetic and biochemical analyses of the glmS ribozyme have established a highly conserved core sequence and secondary structure required for GlcN6P-dependent self-cleavage. However, the high degree of nucleotide conservation offers few clues regarding the higher-order structural organization of the catalytic core. To further investigate core ribozyme structure, minimal 'consensus-type' glmS ribozymes that retain GlcN6P-dependent activity were produced. Mutational analyses of consensus-type glmS ribozymes support a model for core ribozyme folding through a pseudoknot structure formed by the interaction of two highly conserved sequence segments. Moreover, GlcN6P-dependent function is demonstrated for bimolecular constructs in which substrate interaction with the ribozyme is minimally comprised of sequence representing that involved in putative pseudoknot formation. These studies suggest that the glmS ribozyme adopts an intricate multi-strand catalytic core through the formation of a pseudoknot structure, and provide a refined model for further considering GlcN6P interaction and GlcN6P-dependent ribozyme function.

AB - The glmS ribozyme is a self-cleaving RNA catalyst that resides in the 5′-untranslated region of glmS mRNA in certain bacteria. The ribozyme is specifically activated by glucosamine-6-phosphate (GlcN6P), the metabolic product of the GlmS protein, and is thus proposed to provide a feedback mechanism of riboswitch regulation. Both phylogenetic and biochemical analyses of the glmS ribozyme have established a highly conserved core sequence and secondary structure required for GlcN6P-dependent self-cleavage. However, the high degree of nucleotide conservation offers few clues regarding the higher-order structural organization of the catalytic core. To further investigate core ribozyme structure, minimal 'consensus-type' glmS ribozymes that retain GlcN6P-dependent activity were produced. Mutational analyses of consensus-type glmS ribozymes support a model for core ribozyme folding through a pseudoknot structure formed by the interaction of two highly conserved sequence segments. Moreover, GlcN6P-dependent function is demonstrated for bimolecular constructs in which substrate interaction with the ribozyme is minimally comprised of sequence representing that involved in putative pseudoknot formation. These studies suggest that the glmS ribozyme adopts an intricate multi-strand catalytic core through the formation of a pseudoknot structure, and provide a refined model for further considering GlcN6P interaction and GlcN6P-dependent ribozyme function.

UR - http://www.scopus.com/inward/record.url?scp=33644852509&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33644852509&partnerID=8YFLogxK

U2 - 10.1093/nar/gkj497

DO - 10.1093/nar/gkj497

M3 - Article

VL - 34

SP - 968

EP - 975

JO - Nucleic Acids Research

JF - Nucleic Acids Research

SN - 0305-1048

IS - 3

ER -