Correlation measurements between flow harmonics in Au+Au collisions at RHIC

STAR Collaboration

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Flow harmonics (vn) in the Fourier expansion of the azimuthal distribution of particles are widely used to quantify the anisotropy in particle emission in high-energy heavy-ion collisions. The symmetric cumulants, SC(m,n), are used to measure the correlations between different orders of flow harmonics. These correlations are used to constrain the initial conditions and the transport properties of the medium in theoretical models. In this Letter, we present the first measurements of the four-particle symmetric cumulants in Au+Au collisions at sNN=39 and 200 GeV from data collected by the STAR experiment at RHIC. We observe that v2 and v3 are anti-correlated in all centrality intervals with similar correlation strengths from 39 GeV Au+Au to 2.76 TeV Pb+Pb (measured by the ALICE experiment). The v2–v4 correlation seems to be stronger at 39 GeV than at higher collision energies. The initial-stage anti-correlations between second and third order eccentricities are sufficient to describe the measured correlations between v2 and v3. The best description of v2–v4 correlations at sNN=200GeV is obtained with inclusion of the system's nonlinear response to initial eccentricities accompanied by the viscous effect with η/s>0.08. Theoretical calculations using different initial conditions, equations of state and viscous coefficients need to be further explored to extract η/s of the medium created at RHIC.

Original languageEnglish (US)
Pages (from-to)459-465
Number of pages7
JournalPhysics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
Volume783
DOIs
StatePublished - Aug 10 2018

Fingerprint

harmonics
collisions
eccentricity
particle emission
nonlinear systems
ionic collisions
equations of state
transport properties
inclusions
intervals
anisotropy
expansion
energy
coefficients

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics

Cite this

Correlation measurements between flow harmonics in Au+Au collisions at RHIC. / STAR Collaboration.

In: Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, Vol. 783, 10.08.2018, p. 459-465.

Research output: Contribution to journalArticle

@article{9885e6fe87b34926b5cedc08613a2c98,
title = "Correlation measurements between flow harmonics in Au+Au collisions at RHIC",
abstract = "Flow harmonics (vn) in the Fourier expansion of the azimuthal distribution of particles are widely used to quantify the anisotropy in particle emission in high-energy heavy-ion collisions. The symmetric cumulants, SC(m,n), are used to measure the correlations between different orders of flow harmonics. These correlations are used to constrain the initial conditions and the transport properties of the medium in theoretical models. In this Letter, we present the first measurements of the four-particle symmetric cumulants in Au+Au collisions at sNN=39 and 200 GeV from data collected by the STAR experiment at RHIC. We observe that v2 and v3 are anti-correlated in all centrality intervals with similar correlation strengths from 39 GeV Au+Au to 2.76 TeV Pb+Pb (measured by the ALICE experiment). The v2–v4 correlation seems to be stronger at 39 GeV than at higher collision energies. The initial-stage anti-correlations between second and third order eccentricities are sufficient to describe the measured correlations between v2 and v3. The best description of v2–v4 correlations at sNN=200GeV is obtained with inclusion of the system's nonlinear response to initial eccentricities accompanied by the viscous effect with η/s>0.08. Theoretical calculations using different initial conditions, equations of state and viscous coefficients need to be further explored to extract η/s of the medium created at RHIC.",
author = "{STAR Collaboration} and J. Adam and L. Adamczyk and Adams, {J. R.} and Adkins, {J. K.} and G. Agakishiev and Aggarwal, {M. M.} and Z. Ahammed and Ajitanand, {N. N.} and I. Alekseev and Anderson, {D. M.} and R. Aoyama and A. Aparin and D. Arkhipkin and Aschenauer, {E. C.} and Ashraf, {M. U.} and F. Atetalla and A. Attri and Averichev, {G. S.} and X. Bai and V. Bairathi and K. Barish and Bassill, {A. J.} and A. Behera and R. Bellwied and A. Bhasin and Bhati, {A. K.} and P. Bhattarai and J. Bielcik and J. Bielcikova and Bland, {L. C.} and Bordyuzhin, {I. G.} and J. Bouchet and Brandenburg, {J. D.} and Brandin, {A. V.} and D. Brown and J. Bryslawskyj and I. Bunzarov and J. Butterworth and H. Caines and {Calder{\'o}n de la Barca S{\'a}nchez}, M. and Campbell, {J. M.} and D. Cebra and I. Chakaberia and P. Chaloupka and Chang, {F. H.} and Z. Chang and N. Chankova-Bunzarova and A. Chatterjee and Cherney, {Michael G.} and Seger, {Janet E.}",
year = "2018",
month = "8",
day = "10",
doi = "10.1016/j.physletb.2018.05.076",
language = "English (US)",
volume = "783",
pages = "459--465",
journal = "Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics",
issn = "0370-2693",
publisher = "Elsevier",

}

TY - JOUR

T1 - Correlation measurements between flow harmonics in Au+Au collisions at RHIC

AU - STAR Collaboration

AU - Adam, J.

AU - Adamczyk, L.

AU - Adams, J. R.

AU - Adkins, J. K.

AU - Agakishiev, G.

AU - Aggarwal, M. M.

AU - Ahammed, Z.

AU - Ajitanand, N. N.

AU - Alekseev, I.

AU - Anderson, D. M.

AU - Aoyama, R.

AU - Aparin, A.

AU - Arkhipkin, D.

AU - Aschenauer, E. C.

AU - Ashraf, M. U.

AU - Atetalla, F.

AU - Attri, A.

AU - Averichev, G. S.

AU - Bai, X.

AU - Bairathi, V.

AU - Barish, K.

AU - Bassill, A. J.

AU - Behera, A.

AU - Bellwied, R.

AU - Bhasin, A.

AU - Bhati, A. K.

AU - Bhattarai, P.

AU - Bielcik, J.

AU - Bielcikova, J.

AU - Bland, L. C.

AU - Bordyuzhin, I. G.

AU - Bouchet, J.

AU - Brandenburg, J. D.

AU - Brandin, A. V.

AU - Brown, D.

AU - Bryslawskyj, J.

AU - Bunzarov, I.

AU - Butterworth, J.

AU - Caines, H.

AU - Calderón de la Barca Sánchez, M.

AU - Campbell, J. M.

AU - Cebra, D.

AU - Chakaberia, I.

AU - Chaloupka, P.

AU - Chang, F. H.

AU - Chang, Z.

AU - Chankova-Bunzarova, N.

AU - Chatterjee, A.

AU - Cherney, Michael G.

AU - Seger, Janet E.

PY - 2018/8/10

Y1 - 2018/8/10

N2 - Flow harmonics (vn) in the Fourier expansion of the azimuthal distribution of particles are widely used to quantify the anisotropy in particle emission in high-energy heavy-ion collisions. The symmetric cumulants, SC(m,n), are used to measure the correlations between different orders of flow harmonics. These correlations are used to constrain the initial conditions and the transport properties of the medium in theoretical models. In this Letter, we present the first measurements of the four-particle symmetric cumulants in Au+Au collisions at sNN=39 and 200 GeV from data collected by the STAR experiment at RHIC. We observe that v2 and v3 are anti-correlated in all centrality intervals with similar correlation strengths from 39 GeV Au+Au to 2.76 TeV Pb+Pb (measured by the ALICE experiment). The v2–v4 correlation seems to be stronger at 39 GeV than at higher collision energies. The initial-stage anti-correlations between second and third order eccentricities are sufficient to describe the measured correlations between v2 and v3. The best description of v2–v4 correlations at sNN=200GeV is obtained with inclusion of the system's nonlinear response to initial eccentricities accompanied by the viscous effect with η/s>0.08. Theoretical calculations using different initial conditions, equations of state and viscous coefficients need to be further explored to extract η/s of the medium created at RHIC.

AB - Flow harmonics (vn) in the Fourier expansion of the azimuthal distribution of particles are widely used to quantify the anisotropy in particle emission in high-energy heavy-ion collisions. The symmetric cumulants, SC(m,n), are used to measure the correlations between different orders of flow harmonics. These correlations are used to constrain the initial conditions and the transport properties of the medium in theoretical models. In this Letter, we present the first measurements of the four-particle symmetric cumulants in Au+Au collisions at sNN=39 and 200 GeV from data collected by the STAR experiment at RHIC. We observe that v2 and v3 are anti-correlated in all centrality intervals with similar correlation strengths from 39 GeV Au+Au to 2.76 TeV Pb+Pb (measured by the ALICE experiment). The v2–v4 correlation seems to be stronger at 39 GeV than at higher collision energies. The initial-stage anti-correlations between second and third order eccentricities are sufficient to describe the measured correlations between v2 and v3. The best description of v2–v4 correlations at sNN=200GeV is obtained with inclusion of the system's nonlinear response to initial eccentricities accompanied by the viscous effect with η/s>0.08. Theoretical calculations using different initial conditions, equations of state and viscous coefficients need to be further explored to extract η/s of the medium created at RHIC.

UR - http://www.scopus.com/inward/record.url?scp=85050264312&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85050264312&partnerID=8YFLogxK

U2 - 10.1016/j.physletb.2018.05.076

DO - 10.1016/j.physletb.2018.05.076

M3 - Article

VL - 783

SP - 459

EP - 465

JO - Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics

JF - Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics

SN - 0370-2693

ER -