Development and evaluation of a thermosensitive vaginal gel containing raltegravir+efavirenz loaded nanoparticles for HIV prophylaxis

Abhijit A. Date, Annemarie Shibata, Michael Goede, Bridget Sanford, Krista La Bruzzo, Michel Belshan, Christopher J. Destache

Research output: Contribution to journalArticle

57 Scopus citations

Abstract

The objective of this investigation was to develop a thermosensitive vaginal gel containing raltegravir+efavirenz loaded PLGA nanoparticles (RAL+EFV-NPs) for pre-exposure prophylaxis of HIV. RAL+EFV-NPs were fabricated using a modified emulsion-solvent evaporation method and characterized for size and zeta potential. The average size and surface charge of RAL+EFV-NP were 81.8±6.4nm and -23.18±7.18mV respectively. The average encapsulation efficiency of raltegravir and efavirenz was 55.5% and 98.2% respectively. Thermosensitive vaginal gel containing RAL+EFV-NPs was successfully prepared using a combination of Pluronic F127 (20% w/v) and Pluronic F68 (1% w/v). Incorporation RAL+EFV-NPs in the gel did not result in nanoparticle aggregation and RAL+EFV-NPs containing gel showed thermogelation at 32.5°C. The RAL+EFV-NPs were evaluated for inhibition of HIV-1NL4-3 using TZM-bl indicator cells. The EC90 of RAL+EFV-NPs was lower than raltegravir+efavirenz (RAL+EFV) solution but did not reach significance. Compared to control HeLa cells without any treatment, RAL+EFV-NPs or blank gel were not cytotoxic for 14days in vitro. The intracellular levels of efavirenz in RAL+EFV-NPs treated HeLa cells were above the EC90 for 14days whereas raltegravir intracellular concentrations were eliminated within 6days. Transwell experiments of NPs-in-gel demonstrated rapid transfer of fluorescent nanoparticles from the gel and uptake in HeLa cells within 30min. These data demonstrate the potential of antiretroviral NP-embedded vagina gels for long-term vaginal pre-exposure prophylaxis of heterosexual HIV-1 transmission.

Original languageEnglish (US)
Pages (from-to)430-436
Number of pages7
JournalAntiviral Research
Volume96
Issue number3
DOIs
StatePublished - Dec 1 2012

All Science Journal Classification (ASJC) codes

  • Pharmacology
  • Virology

Fingerprint Dive into the research topics of 'Development and evaluation of a thermosensitive vaginal gel containing raltegravir+efavirenz loaded nanoparticles for HIV prophylaxis'. Together they form a unique fingerprint.

  • Cite this