Effect of hydrogen sulfide on sympathetic neurotransmission and catecholamine levels in isolated porcine iris-ciliary body

Kaustubh H. Kulkarni, Emmanuel M. Monjok, Robert Zeyssig, Ghislaine Kouamou, Odelia N. Bongmba, Catherine A. Opere, Ya Fatou Njie, Sunny E. Ohia

Research output: Contribution to journalArticle

62 Scopus citations

Abstract

In the present study, we investigated the pharmacological action of hydrogen sulfide (H2S, using sodium hydrosulfide, NaHS, and/or sodium sulfide, Na2S as donors) on sympathetic neurotransmission from isolated, superfused porcine iris-ciliary bodies. We also examined the effect of H2S on norepinephrine (NE), dopamine and epinephrine concentrations in isolated porcine anterior uvea. Release of [3H]NE was triggered by electrical field stimulation and basal catecholamine concentrations was measured by high performance liquid chromatography (HPLC). Both NaHS and Na 2S caused a concentration-dependent inhibition of electrically evoked [3H]NE release from porcine iris-ciliary body without affecting basal [3H]NE efflux. The inhibitory action of H2S donors on NE release was attenuated by aminooxyacetic acid (AOA) and propargyglycine (PAG), inhibitors of cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), respectively. With the exception of dopamine, NaHS caused a concentration-dependent reduction in endogenous NE and epinephrine concentrations in isolated iris-ciliary bodies. We conclude that H2S can inhibit sympathetic neurotransmission from isolated porcine anterior uvea, an effect that is dependent, at least in part, on intramural biosynthesis of this gas. Furthermore, the observed action of H2S donors on sympathetic transmission may be due to a direct action of this gas on neurotransmitter pools.

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Cellular and Molecular Neuroscience

Cite this