ERK signaling is required for VEGF-A/VEGFR2-induced differentiation of porcine adipose-derived mesenchymal stem cells into endothelial cells

Sami G. Almalki, Devendra K. Agrawal

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

Background: Cell-based therapy that can rejuvenate the endothelium with stimulated adipose-derived mesenchymal stem cells (AMSCs) is a promising therapeutic strategy for the re-endothelialization of denuded arteries at the stenting site. Previously, we have shown that silencing of MMP-2 and MMP-14 inhibits vascular endothelial growth factor receptor type 2 (VEGFR2) cleavage, and induces differentiation of AMSCs toward the endothelial cell (EC) lineage. In this study, we examined the underlying signaling pathways that regulate differentiation of AMSCs to ECs in vitro through VEGFR2. Methods: AMSCs were isolated from porcine abdominal adipose tissue. The isolated AMSCs were characterized by positive expression of CD29, CD44, and CD90 and negative expression of CD11b and CD45. The isolated MSCs were transfected with siRNA to silence MMP-2, MMP-14, and angiotensin receptor 2 (ATR2). Cells were suspended either in endothelial basal media (EBM) or endothelial growth media (EGM) with various treatments. Flow cytometry was performed to examine the expression of EC markers, and western blot analysis was performed to examine the expression and activity of various kinases. Scratch assay was performed to examine the cell migration. Data were analyzed by ANOVA using PRISM GraphPad. Results: After 10 days of stimulation for EC differentiation, the morphology of AMSCs changed to a morphology similar to that of ECs. Silencing MMP-2 and MMP-14 resulted in significant decrease in the number of migrated cells compared with the EGM-only group. ATR2 siRNA transfection did not affect the migration and differentiation of AMSCs to ECs. Stimulation of AMSCs for EC differentiation with or without MMP-2 or MMP-14 siRNA resulted in significant increase in p-ERK, and significant decrease in p-JNK. There was no significant change in p-p38 in all three groups compared with the EBM group. ERK inhibition resulted in significant decrease in the expression of EC markers in the EGM, EGM + MMP-2 siRNA, and EGM + MMP-14 siRNA groups. The VEGFR2 kinase inhibitor induced a dose-dependent inhibition of ERK. Conclusion: The ERK signaling pathway is critical for VEGF-A/VEGFR2-induced differentiation of AMSCs into ECs. These findings provide new insights into the role of the ERK signaling pathway in AMSC differentiation to ECs for potential clinical use in cardiovascular diseases.

Original languageEnglish (US)
Article number113
JournalStem Cell Research and Therapy
Volume8
Issue number1
DOIs
StatePublished - May 12 2017

Fingerprint

Vascular Endothelial Growth Factor Receptor-2
Endothelial cells
Stem cells
Matrix Metalloproteinases
Mesenchymal Stromal Cells
Vascular Endothelial Growth Factor A
Swine
Endothelial Cells
Small Interfering RNA
Growth
Cell Differentiation
Angiotensin Receptors
MAP Kinase Signaling System
Phosphotransferases
Abdominal Fat
Flow cytometry
Cell Lineage
Cell- and Tissue-Based Therapy
Analysis of variance (ANOVA)
Endothelium

All Science Journal Classification (ASJC) codes

  • Medicine (miscellaneous)
  • Molecular Medicine
  • Biochemistry, Genetics and Molecular Biology (miscellaneous)
  • Cell Biology

Cite this

@article{8a05776091644ce08d5a6adee4576508,
title = "ERK signaling is required for VEGF-A/VEGFR2-induced differentiation of porcine adipose-derived mesenchymal stem cells into endothelial cells",
abstract = "Background: Cell-based therapy that can rejuvenate the endothelium with stimulated adipose-derived mesenchymal stem cells (AMSCs) is a promising therapeutic strategy for the re-endothelialization of denuded arteries at the stenting site. Previously, we have shown that silencing of MMP-2 and MMP-14 inhibits vascular endothelial growth factor receptor type 2 (VEGFR2) cleavage, and induces differentiation of AMSCs toward the endothelial cell (EC) lineage. In this study, we examined the underlying signaling pathways that regulate differentiation of AMSCs to ECs in vitro through VEGFR2. Methods: AMSCs were isolated from porcine abdominal adipose tissue. The isolated AMSCs were characterized by positive expression of CD29, CD44, and CD90 and negative expression of CD11b and CD45. The isolated MSCs were transfected with siRNA to silence MMP-2, MMP-14, and angiotensin receptor 2 (ATR2). Cells were suspended either in endothelial basal media (EBM) or endothelial growth media (EGM) with various treatments. Flow cytometry was performed to examine the expression of EC markers, and western blot analysis was performed to examine the expression and activity of various kinases. Scratch assay was performed to examine the cell migration. Data were analyzed by ANOVA using PRISM GraphPad. Results: After 10 days of stimulation for EC differentiation, the morphology of AMSCs changed to a morphology similar to that of ECs. Silencing MMP-2 and MMP-14 resulted in significant decrease in the number of migrated cells compared with the EGM-only group. ATR2 siRNA transfection did not affect the migration and differentiation of AMSCs to ECs. Stimulation of AMSCs for EC differentiation with or without MMP-2 or MMP-14 siRNA resulted in significant increase in p-ERK, and significant decrease in p-JNK. There was no significant change in p-p38 in all three groups compared with the EBM group. ERK inhibition resulted in significant decrease in the expression of EC markers in the EGM, EGM + MMP-2 siRNA, and EGM + MMP-14 siRNA groups. The VEGFR2 kinase inhibitor induced a dose-dependent inhibition of ERK. Conclusion: The ERK signaling pathway is critical for VEGF-A/VEGFR2-induced differentiation of AMSCs into ECs. These findings provide new insights into the role of the ERK signaling pathway in AMSC differentiation to ECs for potential clinical use in cardiovascular diseases.",
author = "Almalki, {Sami G.} and Agrawal, {Devendra K.}",
year = "2017",
month = "5",
day = "12",
doi = "10.1186/s13287-017-0568-4",
language = "English (US)",
volume = "8",
journal = "Stem Cell Research and Therapy",
issn = "1757-6512",
publisher = "BioMed Central",
number = "1",

}

TY - JOUR

T1 - ERK signaling is required for VEGF-A/VEGFR2-induced differentiation of porcine adipose-derived mesenchymal stem cells into endothelial cells

AU - Almalki, Sami G.

AU - Agrawal, Devendra K.

PY - 2017/5/12

Y1 - 2017/5/12

N2 - Background: Cell-based therapy that can rejuvenate the endothelium with stimulated adipose-derived mesenchymal stem cells (AMSCs) is a promising therapeutic strategy for the re-endothelialization of denuded arteries at the stenting site. Previously, we have shown that silencing of MMP-2 and MMP-14 inhibits vascular endothelial growth factor receptor type 2 (VEGFR2) cleavage, and induces differentiation of AMSCs toward the endothelial cell (EC) lineage. In this study, we examined the underlying signaling pathways that regulate differentiation of AMSCs to ECs in vitro through VEGFR2. Methods: AMSCs were isolated from porcine abdominal adipose tissue. The isolated AMSCs were characterized by positive expression of CD29, CD44, and CD90 and negative expression of CD11b and CD45. The isolated MSCs were transfected with siRNA to silence MMP-2, MMP-14, and angiotensin receptor 2 (ATR2). Cells were suspended either in endothelial basal media (EBM) or endothelial growth media (EGM) with various treatments. Flow cytometry was performed to examine the expression of EC markers, and western blot analysis was performed to examine the expression and activity of various kinases. Scratch assay was performed to examine the cell migration. Data were analyzed by ANOVA using PRISM GraphPad. Results: After 10 days of stimulation for EC differentiation, the morphology of AMSCs changed to a morphology similar to that of ECs. Silencing MMP-2 and MMP-14 resulted in significant decrease in the number of migrated cells compared with the EGM-only group. ATR2 siRNA transfection did not affect the migration and differentiation of AMSCs to ECs. Stimulation of AMSCs for EC differentiation with or without MMP-2 or MMP-14 siRNA resulted in significant increase in p-ERK, and significant decrease in p-JNK. There was no significant change in p-p38 in all three groups compared with the EBM group. ERK inhibition resulted in significant decrease in the expression of EC markers in the EGM, EGM + MMP-2 siRNA, and EGM + MMP-14 siRNA groups. The VEGFR2 kinase inhibitor induced a dose-dependent inhibition of ERK. Conclusion: The ERK signaling pathway is critical for VEGF-A/VEGFR2-induced differentiation of AMSCs into ECs. These findings provide new insights into the role of the ERK signaling pathway in AMSC differentiation to ECs for potential clinical use in cardiovascular diseases.

AB - Background: Cell-based therapy that can rejuvenate the endothelium with stimulated adipose-derived mesenchymal stem cells (AMSCs) is a promising therapeutic strategy for the re-endothelialization of denuded arteries at the stenting site. Previously, we have shown that silencing of MMP-2 and MMP-14 inhibits vascular endothelial growth factor receptor type 2 (VEGFR2) cleavage, and induces differentiation of AMSCs toward the endothelial cell (EC) lineage. In this study, we examined the underlying signaling pathways that regulate differentiation of AMSCs to ECs in vitro through VEGFR2. Methods: AMSCs were isolated from porcine abdominal adipose tissue. The isolated AMSCs were characterized by positive expression of CD29, CD44, and CD90 and negative expression of CD11b and CD45. The isolated MSCs were transfected with siRNA to silence MMP-2, MMP-14, and angiotensin receptor 2 (ATR2). Cells were suspended either in endothelial basal media (EBM) or endothelial growth media (EGM) with various treatments. Flow cytometry was performed to examine the expression of EC markers, and western blot analysis was performed to examine the expression and activity of various kinases. Scratch assay was performed to examine the cell migration. Data were analyzed by ANOVA using PRISM GraphPad. Results: After 10 days of stimulation for EC differentiation, the morphology of AMSCs changed to a morphology similar to that of ECs. Silencing MMP-2 and MMP-14 resulted in significant decrease in the number of migrated cells compared with the EGM-only group. ATR2 siRNA transfection did not affect the migration and differentiation of AMSCs to ECs. Stimulation of AMSCs for EC differentiation with or without MMP-2 or MMP-14 siRNA resulted in significant increase in p-ERK, and significant decrease in p-JNK. There was no significant change in p-p38 in all three groups compared with the EBM group. ERK inhibition resulted in significant decrease in the expression of EC markers in the EGM, EGM + MMP-2 siRNA, and EGM + MMP-14 siRNA groups. The VEGFR2 kinase inhibitor induced a dose-dependent inhibition of ERK. Conclusion: The ERK signaling pathway is critical for VEGF-A/VEGFR2-induced differentiation of AMSCs into ECs. These findings provide new insights into the role of the ERK signaling pathway in AMSC differentiation to ECs for potential clinical use in cardiovascular diseases.

UR - http://www.scopus.com/inward/record.url?scp=85018918583&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85018918583&partnerID=8YFLogxK

U2 - 10.1186/s13287-017-0568-4

DO - 10.1186/s13287-017-0568-4

M3 - Article

VL - 8

JO - Stem Cell Research and Therapy

JF - Stem Cell Research and Therapy

SN - 1757-6512

IS - 1

M1 - 113

ER -