Event-shape and multiplicity dependence of freeze-out radii in pp collisions at √s = 7 TeV

The ALICE collaboration

Research output: Contribution to journalArticle

Abstract

Two-particle correlations in high-energy collision experiments enable the extraction of particle source radii by using the Bose-Einstein enhancement of pion production at low relative momentum q ∝ 1/R. It was previously observed that in pp collisions at s = 7TeV the average pair transverse momentum kT range of such analyses is limited due to large background correlations which were attributed to mini-jet phenomena. To investigate this further, an event-shape dependent analysis of Bose-Einstein correlations for pion pairs is performed in this work. By categorizing the events by their transverse sphericity ST into spherical (ST > 0:7) and jet-like (ST < 0:3) events a method was developed that allows for the determination of source radii for much larger values of kT for the first time. Spherical events demonstrate little or no background correlations while jet-like events are dominated by them. This observation agrees with the hypothesis of a mini-jet origin of the non-femtoscopic background correlations and gives new insight into the physics interpretation of the kT dependence of the radii. The emission source size in spherical events shows a substantially diminished kT dependence, while jet-like events show indications of a negative trend with respect to kT in the highest multiplicity events. Regarding the emission source shape, the correlation functions for both event sphericity classes show good agreement with an exponential shape, rather than a Gaussian one. [Figure not available: see fulltext.].

Original languageEnglish (US)
Article number108
JournalJournal of High Energy Physics
Volume2019
Issue number9
DOIs
StatePublished - Sep 1 2019

Fingerprint

collisions
radii
pions
transverse momentum
indication
momentum
trends
physics
augmentation
energy

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics

Cite this

Event-shape and multiplicity dependence of freeze-out radii in pp collisions at √s = 7 TeV. / The ALICE collaboration.

In: Journal of High Energy Physics, Vol. 2019, No. 9, 108, 01.09.2019.

Research output: Contribution to journalArticle

@article{c51dfe6c650d470385dbba4666b2b510,
title = "Event-shape and multiplicity dependence of freeze-out radii in pp collisions at √s = 7 TeV",
abstract = "Two-particle correlations in high-energy collision experiments enable the extraction of particle source radii by using the Bose-Einstein enhancement of pion production at low relative momentum q ∝ 1/R. It was previously observed that in pp collisions at s = 7TeV the average pair transverse momentum kT range of such analyses is limited due to large background correlations which were attributed to mini-jet phenomena. To investigate this further, an event-shape dependent analysis of Bose-Einstein correlations for pion pairs is performed in this work. By categorizing the events by their transverse sphericity ST into spherical (ST > 0:7) and jet-like (ST < 0:3) events a method was developed that allows for the determination of source radii for much larger values of kT for the first time. Spherical events demonstrate little or no background correlations while jet-like events are dominated by them. This observation agrees with the hypothesis of a mini-jet origin of the non-femtoscopic background correlations and gives new insight into the physics interpretation of the kT dependence of the radii. The emission source size in spherical events shows a substantially diminished kT dependence, while jet-like events show indications of a negative trend with respect to kT in the highest multiplicity events. Regarding the emission source shape, the correlation functions for both event sphericity classes show good agreement with an exponential shape, rather than a Gaussian one. [Figure not available: see fulltext.].",
author = "{The ALICE collaboration} and S. Acharya and D. Adamov{\'a} and Adhya, {S. P.} and A. Adler and J. Adolfsson and Aggarwal, {M. M.} and {Aglieri Rinella}, G. and M. Agnello and N. Agrawal and Z. Ahammed and S. Ahmad and Ahn, {S. U.} and S. Aiola and A. Akindinov and M. Al-Turany and Alam, {S. N.} and Albuquerque, {D. S.D.} and D. Aleksandrov and B. Alessandro and Alfanda, {H. M.} and {Alfaro Molina}, R. and Y. Ali and A. Alici and A. Alkin and J. Alme and T. Alt and L. Altenkamper and I. Altsybeev and Anaam, {M. N.} and C. Andrei and D. Andreou and Andrews, {H. A.} and A. Andronic and M. Angeletti and V. Anguelov and C. Anson and T. Antičić and F. Antinori and P. Antonioli and R. Anwar and N. Apadula and L. Aphecetche and H. Appelsh{\"a}user and S. Arcelli and R. Arnaldi and Arsene, {I. C.} and M. Arslandok and A. Augustinus and R. Averbeck and Seger, {J. E.}",
year = "2019",
month = "9",
day = "1",
doi = "10.1007/JHEP09(2019)108",
language = "English (US)",
volume = "2019",
journal = "Journal of High Energy Physics",
issn = "1126-6708",
publisher = "Springer Verlag",
number = "9",

}

TY - JOUR

T1 - Event-shape and multiplicity dependence of freeze-out radii in pp collisions at √s = 7 TeV

AU - The ALICE collaboration

AU - Acharya, S.

AU - Adamová, D.

AU - Adhya, S. P.

AU - Adler, A.

AU - Adolfsson, J.

AU - Aggarwal, M. M.

AU - Aglieri Rinella, G.

AU - Agnello, M.

AU - Agrawal, N.

AU - Ahammed, Z.

AU - Ahmad, S.

AU - Ahn, S. U.

AU - Aiola, S.

AU - Akindinov, A.

AU - Al-Turany, M.

AU - Alam, S. N.

AU - Albuquerque, D. S.D.

AU - Aleksandrov, D.

AU - Alessandro, B.

AU - Alfanda, H. M.

AU - Alfaro Molina, R.

AU - Ali, Y.

AU - Alici, A.

AU - Alkin, A.

AU - Alme, J.

AU - Alt, T.

AU - Altenkamper, L.

AU - Altsybeev, I.

AU - Anaam, M. N.

AU - Andrei, C.

AU - Andreou, D.

AU - Andrews, H. A.

AU - Andronic, A.

AU - Angeletti, M.

AU - Anguelov, V.

AU - Anson, C.

AU - Antičić, T.

AU - Antinori, F.

AU - Antonioli, P.

AU - Anwar, R.

AU - Apadula, N.

AU - Aphecetche, L.

AU - Appelshäuser, H.

AU - Arcelli, S.

AU - Arnaldi, R.

AU - Arsene, I. C.

AU - Arslandok, M.

AU - Augustinus, A.

AU - Averbeck, R.

AU - Seger, J. E.

PY - 2019/9/1

Y1 - 2019/9/1

N2 - Two-particle correlations in high-energy collision experiments enable the extraction of particle source radii by using the Bose-Einstein enhancement of pion production at low relative momentum q ∝ 1/R. It was previously observed that in pp collisions at s = 7TeV the average pair transverse momentum kT range of such analyses is limited due to large background correlations which were attributed to mini-jet phenomena. To investigate this further, an event-shape dependent analysis of Bose-Einstein correlations for pion pairs is performed in this work. By categorizing the events by their transverse sphericity ST into spherical (ST > 0:7) and jet-like (ST < 0:3) events a method was developed that allows for the determination of source radii for much larger values of kT for the first time. Spherical events demonstrate little or no background correlations while jet-like events are dominated by them. This observation agrees with the hypothesis of a mini-jet origin of the non-femtoscopic background correlations and gives new insight into the physics interpretation of the kT dependence of the radii. The emission source size in spherical events shows a substantially diminished kT dependence, while jet-like events show indications of a negative trend with respect to kT in the highest multiplicity events. Regarding the emission source shape, the correlation functions for both event sphericity classes show good agreement with an exponential shape, rather than a Gaussian one. [Figure not available: see fulltext.].

AB - Two-particle correlations in high-energy collision experiments enable the extraction of particle source radii by using the Bose-Einstein enhancement of pion production at low relative momentum q ∝ 1/R. It was previously observed that in pp collisions at s = 7TeV the average pair transverse momentum kT range of such analyses is limited due to large background correlations which were attributed to mini-jet phenomena. To investigate this further, an event-shape dependent analysis of Bose-Einstein correlations for pion pairs is performed in this work. By categorizing the events by their transverse sphericity ST into spherical (ST > 0:7) and jet-like (ST < 0:3) events a method was developed that allows for the determination of source radii for much larger values of kT for the first time. Spherical events demonstrate little or no background correlations while jet-like events are dominated by them. This observation agrees with the hypothesis of a mini-jet origin of the non-femtoscopic background correlations and gives new insight into the physics interpretation of the kT dependence of the radii. The emission source size in spherical events shows a substantially diminished kT dependence, while jet-like events show indications of a negative trend with respect to kT in the highest multiplicity events. Regarding the emission source shape, the correlation functions for both event sphericity classes show good agreement with an exponential shape, rather than a Gaussian one. [Figure not available: see fulltext.].

UR - http://www.scopus.com/inward/record.url?scp=85074488241&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85074488241&partnerID=8YFLogxK

U2 - 10.1007/JHEP09(2019)108

DO - 10.1007/JHEP09(2019)108

M3 - Article

AN - SCOPUS:85074488241

VL - 2019

JO - Journal of High Energy Physics

JF - Journal of High Energy Physics

SN - 1126-6708

IS - 9

M1 - 108

ER -