TY - JOUR
T1 - From yellow to black
T2 - Dramatic changes between cerium(IV) and plutonium(IV) molybdates
AU - Cross, Justin N.
AU - Duncan, Patrick M.
AU - Villa, Eric M.
AU - Polinski, Matthew J.
AU - Babo, Jean Marie
AU - Alekseev, Evgeny V.
AU - Booth, Corwin H.
AU - Albrecht-Schmitt, Thomas E.
PY - 2013/2/20
Y1 - 2013/2/20
N2 - Hydrothermal reactions of CeCl3 and PuCl3 with MoO3 and Cs2CO3 yield surprisingly different results. Ce3Mo6O24(H2O)4 crystallizes as bright yellow plates (space group C2/c, a = 12.7337(7) Å, b = 22.1309(16) Å, c = 7.8392(4) Å, β = 96.591(4), V = 2194.6(2) Å3), whereas CsPu3Mo6O 24(H2O) crystallizes as semiconducting black-red plates (space group C2/c, a = 12.633(5) Å, b = 21.770(8) Å, c = 7.743(7) Å, β = 96.218(2), V = 2117(2) Å3). The topologies of the two compounds are similar, with channel structures built from disordered Mo(VI) square pyramids and (RE)O8 square antiprisms (RE = Ce(IV), Pu(IV)). However, the Pu(IV) compound contains Cs+ in its channels, while the channels in Ce3Mo6O24(H 2O)4 contain water molecules. Disorder and an ambiguous oxidation state of Mo lead to the formula CsPu3Mo6O 24(H2O), where one Mo site is Mo(V) and the rest are Mo(VI). X-ray absorption near-edge structure (XANES) experiments were performed to investigate the source of the black color of CsPu3Mo 6O24(H2O). These experiments revealed Pu to be tetravalent, while the strong pre-edge absorption from the distorted molybdate anions leaves the oxidation state ambiguous between Mo(V) and Mo(VI).
AB - Hydrothermal reactions of CeCl3 and PuCl3 with MoO3 and Cs2CO3 yield surprisingly different results. Ce3Mo6O24(H2O)4 crystallizes as bright yellow plates (space group C2/c, a = 12.7337(7) Å, b = 22.1309(16) Å, c = 7.8392(4) Å, β = 96.591(4), V = 2194.6(2) Å3), whereas CsPu3Mo6O 24(H2O) crystallizes as semiconducting black-red plates (space group C2/c, a = 12.633(5) Å, b = 21.770(8) Å, c = 7.743(7) Å, β = 96.218(2), V = 2117(2) Å3). The topologies of the two compounds are similar, with channel structures built from disordered Mo(VI) square pyramids and (RE)O8 square antiprisms (RE = Ce(IV), Pu(IV)). However, the Pu(IV) compound contains Cs+ in its channels, while the channels in Ce3Mo6O24(H 2O)4 contain water molecules. Disorder and an ambiguous oxidation state of Mo lead to the formula CsPu3Mo6O 24(H2O), where one Mo site is Mo(V) and the rest are Mo(VI). X-ray absorption near-edge structure (XANES) experiments were performed to investigate the source of the black color of CsPu3Mo 6O24(H2O). These experiments revealed Pu to be tetravalent, while the strong pre-edge absorption from the distorted molybdate anions leaves the oxidation state ambiguous between Mo(V) and Mo(VI).
UR - http://www.scopus.com/inward/record.url?scp=84874050626&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84874050626&partnerID=8YFLogxK
U2 - 10.1021/ja311910h
DO - 10.1021/ja311910h
M3 - Article
C2 - 23360299
AN - SCOPUS:84874050626
VL - 135
SP - 2769
EP - 2775
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
SN - 0002-7863
IS - 7
ER -