Abstract
The purpose of this study was to assess breed-related differences in bone histomorphometry, bone biomechanics, and serum biochemistry in three mouse breeds shown to differ in bone mineral density (BMD) (as measured by DXA) and bone mineral content (BMC). Femurs, tibiae, and sera were collected from 16-week-old C3H/HeJ {C3H}, C57BL/6J {BL6}, and DBA/2J {DBA} mice (n = 12/breed). Data collected included BMC and BMD (femora), histomorphometry of cancellous (distal femur) and cortical bone (diaphyseal tibiae and femora), bone strength (femora), and serum alkaline phosphatase (ALP). Consistent with previous reports, BMC and BMD were higher in C3H than in BL6 or DBA mice. The higher BMD in the C3H breed was associated with greater cancellous bone volume, cortical bone area, periosteal bone formation rate, biomechanical strength, and serum ALP. However, mid-diaphyseal total femoral and tibial cross-sectional area and moment of inertia were greatest in BL6, intermediate in C3H, and lowest in DBA mice. The specific distribution of cortical bone in C3H, BL6, DBA mice represents a difference in adaptive response to similar mechanical loads in these breeds. This difference in adaptive response may be intrinsic to the adaptive mechanism, or may be intrinsic to the bone tissue material properties. In either case, the bone-adaptive response to ordinary mechanical loads in the BL6 mice yields bones of lower mechanical efficiency (less stiffness per unit mass of bone tissue) and does not adapt as well as that of the C3H mice where the final product is a bone with greater resistance to bending under load. We suggest that the size, shape, and BMD of the bone are a result of breed-specific genetically regulated cellular mechanisms. Compared with the C3H mice, the lower BMD in BL6 mice is associated with long bones that are weaker because the larger cross-sectional area fails to compensate completely for their lower BMD and BMC.
Original language | English |
---|---|
Pages (from-to) | 337-344 |
Number of pages | 8 |
Journal | Calcified Tissue International |
Volume | 67 |
Issue number | 4 |
DOIs | |
State | Published - 2000 |
Fingerprint
All Science Journal Classification (ASJC) codes
- Endocrinology
Cite this
Genetic variations in bone density, histomorphometry, and strength in mice. / Akhter, Mohammed P.; Iwaniec, U. T.; Covey, M. A.; Cullen, D. M.; Kimmel, D. B.; Recker, Robert R.
In: Calcified Tissue International, Vol. 67, No. 4, 2000, p. 337-344.Research output: Contribution to journal › Article
}
TY - JOUR
T1 - Genetic variations in bone density, histomorphometry, and strength in mice
AU - Akhter, Mohammed P.
AU - Iwaniec, U. T.
AU - Covey, M. A.
AU - Cullen, D. M.
AU - Kimmel, D. B.
AU - Recker, Robert R.
PY - 2000
Y1 - 2000
N2 - The purpose of this study was to assess breed-related differences in bone histomorphometry, bone biomechanics, and serum biochemistry in three mouse breeds shown to differ in bone mineral density (BMD) (as measured by DXA) and bone mineral content (BMC). Femurs, tibiae, and sera were collected from 16-week-old C3H/HeJ {C3H}, C57BL/6J {BL6}, and DBA/2J {DBA} mice (n = 12/breed). Data collected included BMC and BMD (femora), histomorphometry of cancellous (distal femur) and cortical bone (diaphyseal tibiae and femora), bone strength (femora), and serum alkaline phosphatase (ALP). Consistent with previous reports, BMC and BMD were higher in C3H than in BL6 or DBA mice. The higher BMD in the C3H breed was associated with greater cancellous bone volume, cortical bone area, periosteal bone formation rate, biomechanical strength, and serum ALP. However, mid-diaphyseal total femoral and tibial cross-sectional area and moment of inertia were greatest in BL6, intermediate in C3H, and lowest in DBA mice. The specific distribution of cortical bone in C3H, BL6, DBA mice represents a difference in adaptive response to similar mechanical loads in these breeds. This difference in adaptive response may be intrinsic to the adaptive mechanism, or may be intrinsic to the bone tissue material properties. In either case, the bone-adaptive response to ordinary mechanical loads in the BL6 mice yields bones of lower mechanical efficiency (less stiffness per unit mass of bone tissue) and does not adapt as well as that of the C3H mice where the final product is a bone with greater resistance to bending under load. We suggest that the size, shape, and BMD of the bone are a result of breed-specific genetically regulated cellular mechanisms. Compared with the C3H mice, the lower BMD in BL6 mice is associated with long bones that are weaker because the larger cross-sectional area fails to compensate completely for their lower BMD and BMC.
AB - The purpose of this study was to assess breed-related differences in bone histomorphometry, bone biomechanics, and serum biochemistry in three mouse breeds shown to differ in bone mineral density (BMD) (as measured by DXA) and bone mineral content (BMC). Femurs, tibiae, and sera were collected from 16-week-old C3H/HeJ {C3H}, C57BL/6J {BL6}, and DBA/2J {DBA} mice (n = 12/breed). Data collected included BMC and BMD (femora), histomorphometry of cancellous (distal femur) and cortical bone (diaphyseal tibiae and femora), bone strength (femora), and serum alkaline phosphatase (ALP). Consistent with previous reports, BMC and BMD were higher in C3H than in BL6 or DBA mice. The higher BMD in the C3H breed was associated with greater cancellous bone volume, cortical bone area, periosteal bone formation rate, biomechanical strength, and serum ALP. However, mid-diaphyseal total femoral and tibial cross-sectional area and moment of inertia were greatest in BL6, intermediate in C3H, and lowest in DBA mice. The specific distribution of cortical bone in C3H, BL6, DBA mice represents a difference in adaptive response to similar mechanical loads in these breeds. This difference in adaptive response may be intrinsic to the adaptive mechanism, or may be intrinsic to the bone tissue material properties. In either case, the bone-adaptive response to ordinary mechanical loads in the BL6 mice yields bones of lower mechanical efficiency (less stiffness per unit mass of bone tissue) and does not adapt as well as that of the C3H mice where the final product is a bone with greater resistance to bending under load. We suggest that the size, shape, and BMD of the bone are a result of breed-specific genetically regulated cellular mechanisms. Compared with the C3H mice, the lower BMD in BL6 mice is associated with long bones that are weaker because the larger cross-sectional area fails to compensate completely for their lower BMD and BMC.
UR - http://www.scopus.com/inward/record.url?scp=0033805547&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033805547&partnerID=8YFLogxK
U2 - 10.1007/s002230001144
DO - 10.1007/s002230001144
M3 - Article
C2 - 11000349
AN - SCOPUS:0033805547
VL - 67
SP - 337
EP - 344
JO - Calcified Tissue International
JF - Calcified Tissue International
SN - 0171-967X
IS - 4
ER -