Genetics, biomarkers, hereditary cancer syndrome diagnosis, heterogeneity and treatment

a review

Research output: Contribution to journalReview article

18 Citations (Scopus)

Abstract

OPINION STATEMENT: Molecular genetic pathways that drive the phenotypic and genotypic heterogeneity of hereditary colorectal cancer also can affect response to chemotherapy and chemoprevention. These mutations also can alter patients' response to therapy. Environmental differences can affect this highly complex conundrum. We will use Lynch syndrome as a model to explore this issue. However, to begin with, after more than a century of documentation, we must ask what is meant by the eponym "Lynch syndrome". Germline mutations may act as drivers of chemoprevention and chemotherapy and therein may act positively or conversely they may have a negative effect in terms of inhibiting the inactivation of cancer-causing germline mutations. A relatively new field of hereditary cancer therapeutics has significantly impacted cancer care, from the standpoint of the sensitivity or resistance to a particular form of chemotherapy and/or chemoprevention. The question for the diagnostician and therapist must always concern what is the best possible management approach for the patient, particularly when he or she harbors a cancer-causing germline mutation, which, in this case, causes Lynch syndrome. Continued molecular genetic research might yield a more tailored effective treatment for Lynch syndrome. The ultimate goal of such hereditary oncologic research is to better understand the mutation's therapeutic task, namely, its potential to benefit the patient in terms of its treatment goal, thereby fulfilling the essence of personalized medicine. However, this goal may be exceedingly complicated. For example, in the natural clinical and molecular genetic history of hereditary forms of cancer, there will be a predominance of early-onset cancers of multiple anatomic sites. In our Lynch syndrome model, these will be most commonly colorectal, endometrial, and ovarian cancer. Attention must initially be focused upon cancer's early age of onset coupled with the tendency to multiple primary cancers so that, in the case of CRC, colonoscopic screening must be initiated by age 20-25 years and repeated every other year until age 40 years and then annually thereafter. However, screening will be of limited efficacy in the gynecologic cancers (endometrial and ovarian) so that once the family is completed, particularly by age 35-40 years, careful attention must be given to the option of prophylactic hysterectomy and bilateral salpingo-oophorectomy. Given issues of tumor heterogeneity, selected Lynch syndrome families may show an excess of urologic cancers or cancers of the small bowel, and highly targeted screening should be given serious consideration for these as well as cancers of other anatomic sites in such high-risk, cancer-prone patients.

Original languageEnglish (US)
Pages (from-to)429-442
Number of pages14
JournalCurrent Treatment Options in Oncology
Volume15
Issue number3
DOIs
StatePublished - Sep 1 2014

Fingerprint

Hereditary Neoplastic Syndromes
Biomarkers
Hereditary Nonpolyposis Colorectal Neoplasms
Neoplasms
Germ-Line Mutation
Chemoprevention
Therapeutics
Molecular Biology
Endometrial Neoplasms
Drug Therapy
Ovarian Neoplasms
Colorectal Neoplasms
Eponyms
Urologic Neoplasms
Intestinal Neoplasms
Genetic Research
Precision Medicine
Mutation
Ovariectomy
Hysterectomy

All Science Journal Classification (ASJC) codes

  • Oncology
  • Pharmacology (medical)

Cite this

@article{c1c0c6d99bdb431bb5ff35a4a6a97ab2,
title = "Genetics, biomarkers, hereditary cancer syndrome diagnosis, heterogeneity and treatment: a review",
abstract = "OPINION STATEMENT: Molecular genetic pathways that drive the phenotypic and genotypic heterogeneity of hereditary colorectal cancer also can affect response to chemotherapy and chemoprevention. These mutations also can alter patients' response to therapy. Environmental differences can affect this highly complex conundrum. We will use Lynch syndrome as a model to explore this issue. However, to begin with, after more than a century of documentation, we must ask what is meant by the eponym {"}Lynch syndrome{"}. Germline mutations may act as drivers of chemoprevention and chemotherapy and therein may act positively or conversely they may have a negative effect in terms of inhibiting the inactivation of cancer-causing germline mutations. A relatively new field of hereditary cancer therapeutics has significantly impacted cancer care, from the standpoint of the sensitivity or resistance to a particular form of chemotherapy and/or chemoprevention. The question for the diagnostician and therapist must always concern what is the best possible management approach for the patient, particularly when he or she harbors a cancer-causing germline mutation, which, in this case, causes Lynch syndrome. Continued molecular genetic research might yield a more tailored effective treatment for Lynch syndrome. The ultimate goal of such hereditary oncologic research is to better understand the mutation's therapeutic task, namely, its potential to benefit the patient in terms of its treatment goal, thereby fulfilling the essence of personalized medicine. However, this goal may be exceedingly complicated. For example, in the natural clinical and molecular genetic history of hereditary forms of cancer, there will be a predominance of early-onset cancers of multiple anatomic sites. In our Lynch syndrome model, these will be most commonly colorectal, endometrial, and ovarian cancer. Attention must initially be focused upon cancer's early age of onset coupled with the tendency to multiple primary cancers so that, in the case of CRC, colonoscopic screening must be initiated by age 20-25 years and repeated every other year until age 40 years and then annually thereafter. However, screening will be of limited efficacy in the gynecologic cancers (endometrial and ovarian) so that once the family is completed, particularly by age 35-40 years, careful attention must be given to the option of prophylactic hysterectomy and bilateral salpingo-oophorectomy. Given issues of tumor heterogeneity, selected Lynch syndrome families may show an excess of urologic cancers or cancers of the small bowel, and highly targeted screening should be given serious consideration for these as well as cancers of other anatomic sites in such high-risk, cancer-prone patients.",
author = "Lynch, {Henry T.} and Drescher, {Kristen M.} and Joseph Knezetic and Lanspa, {Stephen J.}",
year = "2014",
month = "9",
day = "1",
doi = "10.1007/s11864-014-0293-5",
language = "English (US)",
volume = "15",
pages = "429--442",
journal = "Current Treatment Options in Oncology",
issn = "1527-2729",
publisher = "Springer New York",
number = "3",

}

TY - JOUR

T1 - Genetics, biomarkers, hereditary cancer syndrome diagnosis, heterogeneity and treatment

T2 - a review

AU - Lynch, Henry T.

AU - Drescher, Kristen M.

AU - Knezetic, Joseph

AU - Lanspa, Stephen J.

PY - 2014/9/1

Y1 - 2014/9/1

N2 - OPINION STATEMENT: Molecular genetic pathways that drive the phenotypic and genotypic heterogeneity of hereditary colorectal cancer also can affect response to chemotherapy and chemoprevention. These mutations also can alter patients' response to therapy. Environmental differences can affect this highly complex conundrum. We will use Lynch syndrome as a model to explore this issue. However, to begin with, after more than a century of documentation, we must ask what is meant by the eponym "Lynch syndrome". Germline mutations may act as drivers of chemoprevention and chemotherapy and therein may act positively or conversely they may have a negative effect in terms of inhibiting the inactivation of cancer-causing germline mutations. A relatively new field of hereditary cancer therapeutics has significantly impacted cancer care, from the standpoint of the sensitivity or resistance to a particular form of chemotherapy and/or chemoprevention. The question for the diagnostician and therapist must always concern what is the best possible management approach for the patient, particularly when he or she harbors a cancer-causing germline mutation, which, in this case, causes Lynch syndrome. Continued molecular genetic research might yield a more tailored effective treatment for Lynch syndrome. The ultimate goal of such hereditary oncologic research is to better understand the mutation's therapeutic task, namely, its potential to benefit the patient in terms of its treatment goal, thereby fulfilling the essence of personalized medicine. However, this goal may be exceedingly complicated. For example, in the natural clinical and molecular genetic history of hereditary forms of cancer, there will be a predominance of early-onset cancers of multiple anatomic sites. In our Lynch syndrome model, these will be most commonly colorectal, endometrial, and ovarian cancer. Attention must initially be focused upon cancer's early age of onset coupled with the tendency to multiple primary cancers so that, in the case of CRC, colonoscopic screening must be initiated by age 20-25 years and repeated every other year until age 40 years and then annually thereafter. However, screening will be of limited efficacy in the gynecologic cancers (endometrial and ovarian) so that once the family is completed, particularly by age 35-40 years, careful attention must be given to the option of prophylactic hysterectomy and bilateral salpingo-oophorectomy. Given issues of tumor heterogeneity, selected Lynch syndrome families may show an excess of urologic cancers or cancers of the small bowel, and highly targeted screening should be given serious consideration for these as well as cancers of other anatomic sites in such high-risk, cancer-prone patients.

AB - OPINION STATEMENT: Molecular genetic pathways that drive the phenotypic and genotypic heterogeneity of hereditary colorectal cancer also can affect response to chemotherapy and chemoprevention. These mutations also can alter patients' response to therapy. Environmental differences can affect this highly complex conundrum. We will use Lynch syndrome as a model to explore this issue. However, to begin with, after more than a century of documentation, we must ask what is meant by the eponym "Lynch syndrome". Germline mutations may act as drivers of chemoprevention and chemotherapy and therein may act positively or conversely they may have a negative effect in terms of inhibiting the inactivation of cancer-causing germline mutations. A relatively new field of hereditary cancer therapeutics has significantly impacted cancer care, from the standpoint of the sensitivity or resistance to a particular form of chemotherapy and/or chemoprevention. The question for the diagnostician and therapist must always concern what is the best possible management approach for the patient, particularly when he or she harbors a cancer-causing germline mutation, which, in this case, causes Lynch syndrome. Continued molecular genetic research might yield a more tailored effective treatment for Lynch syndrome. The ultimate goal of such hereditary oncologic research is to better understand the mutation's therapeutic task, namely, its potential to benefit the patient in terms of its treatment goal, thereby fulfilling the essence of personalized medicine. However, this goal may be exceedingly complicated. For example, in the natural clinical and molecular genetic history of hereditary forms of cancer, there will be a predominance of early-onset cancers of multiple anatomic sites. In our Lynch syndrome model, these will be most commonly colorectal, endometrial, and ovarian cancer. Attention must initially be focused upon cancer's early age of onset coupled with the tendency to multiple primary cancers so that, in the case of CRC, colonoscopic screening must be initiated by age 20-25 years and repeated every other year until age 40 years and then annually thereafter. However, screening will be of limited efficacy in the gynecologic cancers (endometrial and ovarian) so that once the family is completed, particularly by age 35-40 years, careful attention must be given to the option of prophylactic hysterectomy and bilateral salpingo-oophorectomy. Given issues of tumor heterogeneity, selected Lynch syndrome families may show an excess of urologic cancers or cancers of the small bowel, and highly targeted screening should be given serious consideration for these as well as cancers of other anatomic sites in such high-risk, cancer-prone patients.

UR - http://www.scopus.com/inward/record.url?scp=85027927226&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85027927226&partnerID=8YFLogxK

U2 - 10.1007/s11864-014-0293-5

DO - 10.1007/s11864-014-0293-5

M3 - Review article

VL - 15

SP - 429

EP - 442

JO - Current Treatment Options in Oncology

JF - Current Treatment Options in Oncology

SN - 1527-2729

IS - 3

ER -