Genome plasticity in Candida albicans is driven by long repeat sequences

Robert T. Todd, Tyler D. Wikoff, Anja Forche, Anna Selmecki

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Genome rearrangements resulting in copy number variation (CNV) and loss of heterozygosity (LOH) are frequently observed during the somatic evolution of cancer and promote rapid adaptation of fungi to novel environments. In the human fungal pathogen Candida albicans, CNV and LOH confer increased virulence and antifungal drug resistance, yet the mechanisms driving these rearrangements are not completely understood. Here, we unveil an extensive array of long repeat sequences (65-6499 bp) that are associated with CNV, LOH, and chromosomal inversions. Many of these long repeat sequences are uncharacterized and encompass one or more coding sequences that are actively transcribed. Repeats associated with genome rearrangements are predominantly inverted and separated by up to ~1.6 Mb, an extraordinary distance for homology-based DNA repair/recombination in yeast. These repeat sequences are a significant source of genome plasticity across diverse strain backgrounds including clinical, environmental, and experimentally evolved isolates, and represent previously uncharacterized variation in the reference genome.

Original languageEnglish (US)
JournaleLife
Volume8
DOIs
StatePublished - Jun 7 2019
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Neuroscience(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)

Fingerprint Dive into the research topics of 'Genome plasticity in Candida albicans is driven by long repeat sequences'. Together they form a unique fingerprint.

Cite this