Genome-wide association scans identified CTNNBL1 as a novel gene for obesity

Yong Jun Liu, Xiao Gang Liu, Liang Wang, Christian Dina, Han Yan, Jian Feng Liu, Shawn Levy, Christopher J. Papasian, Betty M. Drees, James J. Hamilton, David Meyre, Jerome Delplanque, Yu Fang Pei, Lei Zhang, Robert R. Recker, Philippe Froguel, Hong Wen Deng

Research output: Contribution to journalArticlepeer-review

140 Scopus citations


Obesity is a major public health problem with strong genetic determination; however, the genetic factors underlying obesity are largely unknown. In this study, we performed a genome-wide association scan for obesity by examining approximately 500 000 single-nucleotide polymorphisms (SNPs) in a sample of 1000 unrelated US Caucasians. We identified a novel gene, CTNNBL1, which has multiple SNPs associated with body mass index (BMI) and fat mass. The most significant SNP, rs6013029, achieved experiment-wise P-values of 2.69 × 10-7 for BMI and of 4.99 × 10-8 for fat mass, respectively. The SNP rs6013029 minor allele T confers an average increase in BMI and fat mass of 2.67 kg/m2 and 5.96 kg, respectively, compared with the alternative allele G. We further genotyped the five most significant CTNNBL1 SNPs in a French case-control sample comprising 896 class III obese adults (BMI ≥ 40 kg/m2) and 2916 lean adults (BMI <25 kg/m2). All five SNPs showed consistent associations with obesity (8.83 × 10-3 <P <6.96 × 10-4). Those subjects who were homozygous for the rs6013029 T allele had 1.42-fold increased odds of obesity compared with those without the T allele. The protein structure of CTNNBL1 is homologous to β-catenin, a family of proteins containing armadillo repeats, suggesting similar biological functions. β-Catenin is involved in the Wnt/β-catenin-signaling pathway which appears to contribute to maintaining the undifferentiated state of pre-adipocytes by inhibiting adipogenic gene expression. Our study hence suggests a novel mechanism for the development of obesity, where CTNNBL1 may play an important role. Our study also provided supportive evidence for previously identified associations between obesity and INSIG2 and PFKP, but not FTO.

Original languageEnglish (US)
Pages (from-to)1803-1813
Number of pages11
JournalHuman Molecular Genetics
Issue number12
StatePublished - Jun 15 2008

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • Genetics
  • Genetics(clinical)


Dive into the research topics of 'Genome-wide association scans identified CTNNBL1 as a novel gene for obesity'. Together they form a unique fingerprint.

Cite this