Increases in BMD correlate with improvements in bone microarchitecture with teriparatide treatment in postmenopausal women with osteoporosis

Peiqi Chen, Paul D. Miller, Robert R. Recker, Heinrich Resch, Asad Rana, Imre Pavo, Adrien A. Sipos

Research output: Contribution to journalArticle

62 Citations (Scopus)

Abstract

Increases in BMD are correlated with improvements in 2D and 3D trabecular microarchitecture indices with teriparatide treatment. Therefore, improvements in trabecular bone microarchitecture may be one of the mechanisms to explain how BMD increases improve bone strength during teriparatide treatment. Introduction: Bone strength is determined by BMD and other elements of bone quality, including bone microarchitecture. Teriparatide treatment increases BMD and improves both cortical and trabecular bone microarchitecture. Increases in lumbar spine (LS) BMD account for ∼30-41 % of the vertebral fracture risk reduction with teriparatide treatment. The relationship between increases in BMD and improvements in cortical and trabecular microarchitecture has not yet been studied. Materials and Methods: The relationship between increases in BMD and improvements in cortical and trabecular microarchitecture after teriparatide treatment was assessed using data from a subset of patients who had areal BMD measurements and structural parameters from transiliac bone biopsies in the Fracture Prevention Trial. 2D histomorphometric and 3D μCT parameters were measured at baseline and 12 (n = 21) or 22 (n = 36) mo. LS BMD was assessed at baseline and 12 and 18 mo, and femoral neck (FN) BMD was measured at baseline and 12 mo. Pearson correlation was performed to assess the relationship between actual changes in BMD and actual changes in microarchitectural parameters. Results: Changes in LS BMD at 12 mo were significantly correlated with improvements in trabecular bone structure at 22 mo: 2D bone volume (r = 0.45, p = 0.02), 2D mean wall thickness (r = 0.41, p = 0.03), 3D bone volume (r = 0.48, p = 0.006), 3D trabecular thickness (r = 0.44, p = 0.01), 3D trabecular separation (r = -0.37, p = 0.04), 3D structural model index (r = -0.54, p = 0.001), and 3D connectivity density (r = 0.41, p = 0.02). Changes in LS BMD at 18 mo had similar correlations with improvements in bone structure at 22 mo. Changes in FN BMD at 12 mo were significantly correlated with changes in 2D mean wall thickness (r = 0.56, p = 0.002), 3D bone volume (r = 0.51, p = 0.004), 3D trabecular thickness (r = 0.44, p = 0.01), 3D trabecular separation (r = -0.46, p = 0.01), and 3D structural model index (r = -0.55, p = 0.001). Conclusions: Increases in BMD are correlated with improvements in trabecular microarchitecture in iliac crest of patients with teriparatide treatment. Therefore, improvements in trabecular bone microarchitecture may be one of the mechanisms to explain how BMD increases improve bone strength during teriparatide treatment.

Original languageEnglish
Pages (from-to)1173-1180
Number of pages8
JournalJournal of Bone and Mineral Research
Volume22
Issue number8
DOIs
StatePublished - Aug 2007

Fingerprint

Teriparatide
Osteoporosis
Bone and Bones
Spine
Therapeutics
Structural Models
Femur Neck
Fracture Fixation
Risk Reduction Behavior

All Science Journal Classification (ASJC) codes

  • Surgery

Cite this

Increases in BMD correlate with improvements in bone microarchitecture with teriparatide treatment in postmenopausal women with osteoporosis. / Chen, Peiqi; Miller, Paul D.; Recker, Robert R.; Resch, Heinrich; Rana, Asad; Pavo, Imre; Sipos, Adrien A.

In: Journal of Bone and Mineral Research, Vol. 22, No. 8, 08.2007, p. 1173-1180.

Research output: Contribution to journalArticle

Chen, Peiqi ; Miller, Paul D. ; Recker, Robert R. ; Resch, Heinrich ; Rana, Asad ; Pavo, Imre ; Sipos, Adrien A. / Increases in BMD correlate with improvements in bone microarchitecture with teriparatide treatment in postmenopausal women with osteoporosis. In: Journal of Bone and Mineral Research. 2007 ; Vol. 22, No. 8. pp. 1173-1180.
@article{4bfdc082ef9f4129b52845db83c4a8e2,
title = "Increases in BMD correlate with improvements in bone microarchitecture with teriparatide treatment in postmenopausal women with osteoporosis",
abstract = "Increases in BMD are correlated with improvements in 2D and 3D trabecular microarchitecture indices with teriparatide treatment. Therefore, improvements in trabecular bone microarchitecture may be one of the mechanisms to explain how BMD increases improve bone strength during teriparatide treatment. Introduction: Bone strength is determined by BMD and other elements of bone quality, including bone microarchitecture. Teriparatide treatment increases BMD and improves both cortical and trabecular bone microarchitecture. Increases in lumbar spine (LS) BMD account for ∼30-41 {\%} of the vertebral fracture risk reduction with teriparatide treatment. The relationship between increases in BMD and improvements in cortical and trabecular microarchitecture has not yet been studied. Materials and Methods: The relationship between increases in BMD and improvements in cortical and trabecular microarchitecture after teriparatide treatment was assessed using data from a subset of patients who had areal BMD measurements and structural parameters from transiliac bone biopsies in the Fracture Prevention Trial. 2D histomorphometric and 3D μCT parameters were measured at baseline and 12 (n = 21) or 22 (n = 36) mo. LS BMD was assessed at baseline and 12 and 18 mo, and femoral neck (FN) BMD was measured at baseline and 12 mo. Pearson correlation was performed to assess the relationship between actual changes in BMD and actual changes in microarchitectural parameters. Results: Changes in LS BMD at 12 mo were significantly correlated with improvements in trabecular bone structure at 22 mo: 2D bone volume (r = 0.45, p = 0.02), 2D mean wall thickness (r = 0.41, p = 0.03), 3D bone volume (r = 0.48, p = 0.006), 3D trabecular thickness (r = 0.44, p = 0.01), 3D trabecular separation (r = -0.37, p = 0.04), 3D structural model index (r = -0.54, p = 0.001), and 3D connectivity density (r = 0.41, p = 0.02). Changes in LS BMD at 18 mo had similar correlations with improvements in bone structure at 22 mo. Changes in FN BMD at 12 mo were significantly correlated with changes in 2D mean wall thickness (r = 0.56, p = 0.002), 3D bone volume (r = 0.51, p = 0.004), 3D trabecular thickness (r = 0.44, p = 0.01), 3D trabecular separation (r = -0.46, p = 0.01), and 3D structural model index (r = -0.55, p = 0.001). Conclusions: Increases in BMD are correlated with improvements in trabecular microarchitecture in iliac crest of patients with teriparatide treatment. Therefore, improvements in trabecular bone microarchitecture may be one of the mechanisms to explain how BMD increases improve bone strength during teriparatide treatment.",
author = "Peiqi Chen and Miller, {Paul D.} and Recker, {Robert R.} and Heinrich Resch and Asad Rana and Imre Pavo and Sipos, {Adrien A.}",
year = "2007",
month = "8",
doi = "10.1359/jbmr.070413",
language = "English",
volume = "22",
pages = "1173--1180",
journal = "Journal of Bone and Mineral Research",
issn = "0884-0431",
publisher = "Wiley-Blackwell",
number = "8",

}

TY - JOUR

T1 - Increases in BMD correlate with improvements in bone microarchitecture with teriparatide treatment in postmenopausal women with osteoporosis

AU - Chen, Peiqi

AU - Miller, Paul D.

AU - Recker, Robert R.

AU - Resch, Heinrich

AU - Rana, Asad

AU - Pavo, Imre

AU - Sipos, Adrien A.

PY - 2007/8

Y1 - 2007/8

N2 - Increases in BMD are correlated with improvements in 2D and 3D trabecular microarchitecture indices with teriparatide treatment. Therefore, improvements in trabecular bone microarchitecture may be one of the mechanisms to explain how BMD increases improve bone strength during teriparatide treatment. Introduction: Bone strength is determined by BMD and other elements of bone quality, including bone microarchitecture. Teriparatide treatment increases BMD and improves both cortical and trabecular bone microarchitecture. Increases in lumbar spine (LS) BMD account for ∼30-41 % of the vertebral fracture risk reduction with teriparatide treatment. The relationship between increases in BMD and improvements in cortical and trabecular microarchitecture has not yet been studied. Materials and Methods: The relationship between increases in BMD and improvements in cortical and trabecular microarchitecture after teriparatide treatment was assessed using data from a subset of patients who had areal BMD measurements and structural parameters from transiliac bone biopsies in the Fracture Prevention Trial. 2D histomorphometric and 3D μCT parameters were measured at baseline and 12 (n = 21) or 22 (n = 36) mo. LS BMD was assessed at baseline and 12 and 18 mo, and femoral neck (FN) BMD was measured at baseline and 12 mo. Pearson correlation was performed to assess the relationship between actual changes in BMD and actual changes in microarchitectural parameters. Results: Changes in LS BMD at 12 mo were significantly correlated with improvements in trabecular bone structure at 22 mo: 2D bone volume (r = 0.45, p = 0.02), 2D mean wall thickness (r = 0.41, p = 0.03), 3D bone volume (r = 0.48, p = 0.006), 3D trabecular thickness (r = 0.44, p = 0.01), 3D trabecular separation (r = -0.37, p = 0.04), 3D structural model index (r = -0.54, p = 0.001), and 3D connectivity density (r = 0.41, p = 0.02). Changes in LS BMD at 18 mo had similar correlations with improvements in bone structure at 22 mo. Changes in FN BMD at 12 mo were significantly correlated with changes in 2D mean wall thickness (r = 0.56, p = 0.002), 3D bone volume (r = 0.51, p = 0.004), 3D trabecular thickness (r = 0.44, p = 0.01), 3D trabecular separation (r = -0.46, p = 0.01), and 3D structural model index (r = -0.55, p = 0.001). Conclusions: Increases in BMD are correlated with improvements in trabecular microarchitecture in iliac crest of patients with teriparatide treatment. Therefore, improvements in trabecular bone microarchitecture may be one of the mechanisms to explain how BMD increases improve bone strength during teriparatide treatment.

AB - Increases in BMD are correlated with improvements in 2D and 3D trabecular microarchitecture indices with teriparatide treatment. Therefore, improvements in trabecular bone microarchitecture may be one of the mechanisms to explain how BMD increases improve bone strength during teriparatide treatment. Introduction: Bone strength is determined by BMD and other elements of bone quality, including bone microarchitecture. Teriparatide treatment increases BMD and improves both cortical and trabecular bone microarchitecture. Increases in lumbar spine (LS) BMD account for ∼30-41 % of the vertebral fracture risk reduction with teriparatide treatment. The relationship between increases in BMD and improvements in cortical and trabecular microarchitecture has not yet been studied. Materials and Methods: The relationship between increases in BMD and improvements in cortical and trabecular microarchitecture after teriparatide treatment was assessed using data from a subset of patients who had areal BMD measurements and structural parameters from transiliac bone biopsies in the Fracture Prevention Trial. 2D histomorphometric and 3D μCT parameters were measured at baseline and 12 (n = 21) or 22 (n = 36) mo. LS BMD was assessed at baseline and 12 and 18 mo, and femoral neck (FN) BMD was measured at baseline and 12 mo. Pearson correlation was performed to assess the relationship between actual changes in BMD and actual changes in microarchitectural parameters. Results: Changes in LS BMD at 12 mo were significantly correlated with improvements in trabecular bone structure at 22 mo: 2D bone volume (r = 0.45, p = 0.02), 2D mean wall thickness (r = 0.41, p = 0.03), 3D bone volume (r = 0.48, p = 0.006), 3D trabecular thickness (r = 0.44, p = 0.01), 3D trabecular separation (r = -0.37, p = 0.04), 3D structural model index (r = -0.54, p = 0.001), and 3D connectivity density (r = 0.41, p = 0.02). Changes in LS BMD at 18 mo had similar correlations with improvements in bone structure at 22 mo. Changes in FN BMD at 12 mo were significantly correlated with changes in 2D mean wall thickness (r = 0.56, p = 0.002), 3D bone volume (r = 0.51, p = 0.004), 3D trabecular thickness (r = 0.44, p = 0.01), 3D trabecular separation (r = -0.46, p = 0.01), and 3D structural model index (r = -0.55, p = 0.001). Conclusions: Increases in BMD are correlated with improvements in trabecular microarchitecture in iliac crest of patients with teriparatide treatment. Therefore, improvements in trabecular bone microarchitecture may be one of the mechanisms to explain how BMD increases improve bone strength during teriparatide treatment.

UR - http://www.scopus.com/inward/record.url?scp=34548076624&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34548076624&partnerID=8YFLogxK

U2 - 10.1359/jbmr.070413

DO - 10.1359/jbmr.070413

M3 - Article

VL - 22

SP - 1173

EP - 1180

JO - Journal of Bone and Mineral Research

JF - Journal of Bone and Mineral Research

SN - 0884-0431

IS - 8

ER -