Interaction between heat shock proteins and antimicrobial peptides

L. Otvos, O. Insug, M. E. Rogers, P. J. Consolvo, B. A. Condie, Sándor Lovas, P. Bulet, M. Blaszczyk-Thurin

Research output: Contribution to journalArticle

234 Citations (Scopus)

Abstract

Drosocin, pyrrhocoricin, and apidaecin, representing the short (18-20 amino acid residues) proline-rich antibacterial peptide family, originally isolated from insects, were shown to act on a target bacterial protein in a stereospecific manner. Native pyrrhocoricin and one of its analogues designed for this purpose protect mice from bacterial challenge and, therefore, may represent alternatives to existing antimicrobial drugs. Furthermore, this mode of action can be a basis for the design of a completely novel set of antibacterial compounds, peptidic or peptidomimetic, if the interacting bacterial biopolymers are known. Recently, apidaecin was shown to enter Escherichia coli and subsequently kill bacteria through sequential interactions with diverse target macromolecules. In this paper report, we used biotin- and fluorescein-labeled pyrrhocoricin, drosocin, and apidaecin analogues to identify biopolymers that bind to these peptides and are potentially involved in the above-mentioned multistep killing process. Through use of a biotin-labeled pyrrhocoricin analogue, we isolated two interacting proteins from E. coli. According to mass spectrometry, Western blot, and fluorescence polarization, the short, proline-rich peptides bound to DnaK, the 70-kDa bacterial heat shock protein, both in solution and on the solid-phase. GroEL, the 60-kDa chaperonin, also bound in solution. Control experiments with an unrelated labeled peptide showed that while binding to DnaK was specific for the antibacterial peptides, binding to GroEL was not specific for these insect sequences. The killing of bacteria and DnaK binding are related events, as an inactive pyrrhocoricin analogue made of all-D-amino acids failed to bind. The pharmaceutical potential of the insect antibacterial peptides is underscored by the fact that pyrrhocoricin did not bind to Hsp70, the human equivalent of DnaK. Competition assay with unlabeled pyrrhocoricin indicated differences in GroEL and DnaK binding and a probable two-site interaction with DnaK. In addition, all three antibacterial peptides strongly interacted with two bacterial lipopolysaccharide (LPS) preparations in solution, indicating that the initial step of the bacterial killing cascade proceeds through LPS-mediated cell entry.

Original languageEnglish
Pages (from-to)14150-14159
Number of pages10
JournalBiochemistry
Volume39
Issue number46
DOIs
StatePublished - Nov 21 2000

Fingerprint

Heat-Shock Proteins
Peptides
Insects
Biopolymers
Bacterial Proteins
Biotin
Proline
Lipopolysaccharides
Bacteria
Chaperonins
Chaperonin 60
Peptidomimetics
Amino Acids
Fluorescence Polarization
Escherichia coli Proteins
Pyrrhocoris apterus pyrrhocoricin protein
Fluorescein
Macromolecules
Pharmaceutical Preparations
Escherichia coli

All Science Journal Classification (ASJC) codes

  • Biochemistry

Cite this

Otvos, L., Insug, O., Rogers, M. E., Consolvo, P. J., Condie, B. A., Lovas, S., ... Blaszczyk-Thurin, M. (2000). Interaction between heat shock proteins and antimicrobial peptides. Biochemistry, 39(46), 14150-14159. https://doi.org/10.1021/bi0012843

Interaction between heat shock proteins and antimicrobial peptides. / Otvos, L.; Insug, O.; Rogers, M. E.; Consolvo, P. J.; Condie, B. A.; Lovas, Sándor; Bulet, P.; Blaszczyk-Thurin, M.

In: Biochemistry, Vol. 39, No. 46, 21.11.2000, p. 14150-14159.

Research output: Contribution to journalArticle

Otvos, L, Insug, O, Rogers, ME, Consolvo, PJ, Condie, BA, Lovas, S, Bulet, P & Blaszczyk-Thurin, M 2000, 'Interaction between heat shock proteins and antimicrobial peptides', Biochemistry, vol. 39, no. 46, pp. 14150-14159. https://doi.org/10.1021/bi0012843
Otvos L, Insug O, Rogers ME, Consolvo PJ, Condie BA, Lovas S et al. Interaction between heat shock proteins and antimicrobial peptides. Biochemistry. 2000 Nov 21;39(46):14150-14159. https://doi.org/10.1021/bi0012843
Otvos, L. ; Insug, O. ; Rogers, M. E. ; Consolvo, P. J. ; Condie, B. A. ; Lovas, Sándor ; Bulet, P. ; Blaszczyk-Thurin, M. / Interaction between heat shock proteins and antimicrobial peptides. In: Biochemistry. 2000 ; Vol. 39, No. 46. pp. 14150-14159.
@article{6d547486a7b9443b84289db92efe7e2e,
title = "Interaction between heat shock proteins and antimicrobial peptides",
abstract = "Drosocin, pyrrhocoricin, and apidaecin, representing the short (18-20 amino acid residues) proline-rich antibacterial peptide family, originally isolated from insects, were shown to act on a target bacterial protein in a stereospecific manner. Native pyrrhocoricin and one of its analogues designed for this purpose protect mice from bacterial challenge and, therefore, may represent alternatives to existing antimicrobial drugs. Furthermore, this mode of action can be a basis for the design of a completely novel set of antibacterial compounds, peptidic or peptidomimetic, if the interacting bacterial biopolymers are known. Recently, apidaecin was shown to enter Escherichia coli and subsequently kill bacteria through sequential interactions with diverse target macromolecules. In this paper report, we used biotin- and fluorescein-labeled pyrrhocoricin, drosocin, and apidaecin analogues to identify biopolymers that bind to these peptides and are potentially involved in the above-mentioned multistep killing process. Through use of a biotin-labeled pyrrhocoricin analogue, we isolated two interacting proteins from E. coli. According to mass spectrometry, Western blot, and fluorescence polarization, the short, proline-rich peptides bound to DnaK, the 70-kDa bacterial heat shock protein, both in solution and on the solid-phase. GroEL, the 60-kDa chaperonin, also bound in solution. Control experiments with an unrelated labeled peptide showed that while binding to DnaK was specific for the antibacterial peptides, binding to GroEL was not specific for these insect sequences. The killing of bacteria and DnaK binding are related events, as an inactive pyrrhocoricin analogue made of all-D-amino acids failed to bind. The pharmaceutical potential of the insect antibacterial peptides is underscored by the fact that pyrrhocoricin did not bind to Hsp70, the human equivalent of DnaK. Competition assay with unlabeled pyrrhocoricin indicated differences in GroEL and DnaK binding and a probable two-site interaction with DnaK. In addition, all three antibacterial peptides strongly interacted with two bacterial lipopolysaccharide (LPS) preparations in solution, indicating that the initial step of the bacterial killing cascade proceeds through LPS-mediated cell entry.",
author = "L. Otvos and O. Insug and Rogers, {M. E.} and Consolvo, {P. J.} and Condie, {B. A.} and S{\'a}ndor Lovas and P. Bulet and M. Blaszczyk-Thurin",
year = "2000",
month = "11",
day = "21",
doi = "10.1021/bi0012843",
language = "English",
volume = "39",
pages = "14150--14159",
journal = "Biochemistry",
issn = "0006-2960",
publisher = "American Chemical Society",
number = "46",

}

TY - JOUR

T1 - Interaction between heat shock proteins and antimicrobial peptides

AU - Otvos, L.

AU - Insug, O.

AU - Rogers, M. E.

AU - Consolvo, P. J.

AU - Condie, B. A.

AU - Lovas, Sándor

AU - Bulet, P.

AU - Blaszczyk-Thurin, M.

PY - 2000/11/21

Y1 - 2000/11/21

N2 - Drosocin, pyrrhocoricin, and apidaecin, representing the short (18-20 amino acid residues) proline-rich antibacterial peptide family, originally isolated from insects, were shown to act on a target bacterial protein in a stereospecific manner. Native pyrrhocoricin and one of its analogues designed for this purpose protect mice from bacterial challenge and, therefore, may represent alternatives to existing antimicrobial drugs. Furthermore, this mode of action can be a basis for the design of a completely novel set of antibacterial compounds, peptidic or peptidomimetic, if the interacting bacterial biopolymers are known. Recently, apidaecin was shown to enter Escherichia coli and subsequently kill bacteria through sequential interactions with diverse target macromolecules. In this paper report, we used biotin- and fluorescein-labeled pyrrhocoricin, drosocin, and apidaecin analogues to identify biopolymers that bind to these peptides and are potentially involved in the above-mentioned multistep killing process. Through use of a biotin-labeled pyrrhocoricin analogue, we isolated two interacting proteins from E. coli. According to mass spectrometry, Western blot, and fluorescence polarization, the short, proline-rich peptides bound to DnaK, the 70-kDa bacterial heat shock protein, both in solution and on the solid-phase. GroEL, the 60-kDa chaperonin, also bound in solution. Control experiments with an unrelated labeled peptide showed that while binding to DnaK was specific for the antibacterial peptides, binding to GroEL was not specific for these insect sequences. The killing of bacteria and DnaK binding are related events, as an inactive pyrrhocoricin analogue made of all-D-amino acids failed to bind. The pharmaceutical potential of the insect antibacterial peptides is underscored by the fact that pyrrhocoricin did not bind to Hsp70, the human equivalent of DnaK. Competition assay with unlabeled pyrrhocoricin indicated differences in GroEL and DnaK binding and a probable two-site interaction with DnaK. In addition, all three antibacterial peptides strongly interacted with two bacterial lipopolysaccharide (LPS) preparations in solution, indicating that the initial step of the bacterial killing cascade proceeds through LPS-mediated cell entry.

AB - Drosocin, pyrrhocoricin, and apidaecin, representing the short (18-20 amino acid residues) proline-rich antibacterial peptide family, originally isolated from insects, were shown to act on a target bacterial protein in a stereospecific manner. Native pyrrhocoricin and one of its analogues designed for this purpose protect mice from bacterial challenge and, therefore, may represent alternatives to existing antimicrobial drugs. Furthermore, this mode of action can be a basis for the design of a completely novel set of antibacterial compounds, peptidic or peptidomimetic, if the interacting bacterial biopolymers are known. Recently, apidaecin was shown to enter Escherichia coli and subsequently kill bacteria through sequential interactions with diverse target macromolecules. In this paper report, we used biotin- and fluorescein-labeled pyrrhocoricin, drosocin, and apidaecin analogues to identify biopolymers that bind to these peptides and are potentially involved in the above-mentioned multistep killing process. Through use of a biotin-labeled pyrrhocoricin analogue, we isolated two interacting proteins from E. coli. According to mass spectrometry, Western blot, and fluorescence polarization, the short, proline-rich peptides bound to DnaK, the 70-kDa bacterial heat shock protein, both in solution and on the solid-phase. GroEL, the 60-kDa chaperonin, also bound in solution. Control experiments with an unrelated labeled peptide showed that while binding to DnaK was specific for the antibacterial peptides, binding to GroEL was not specific for these insect sequences. The killing of bacteria and DnaK binding are related events, as an inactive pyrrhocoricin analogue made of all-D-amino acids failed to bind. The pharmaceutical potential of the insect antibacterial peptides is underscored by the fact that pyrrhocoricin did not bind to Hsp70, the human equivalent of DnaK. Competition assay with unlabeled pyrrhocoricin indicated differences in GroEL and DnaK binding and a probable two-site interaction with DnaK. In addition, all three antibacterial peptides strongly interacted with two bacterial lipopolysaccharide (LPS) preparations in solution, indicating that the initial step of the bacterial killing cascade proceeds through LPS-mediated cell entry.

UR - http://www.scopus.com/inward/record.url?scp=0034700271&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034700271&partnerID=8YFLogxK

U2 - 10.1021/bi0012843

DO - 10.1021/bi0012843

M3 - Article

C2 - 11087363

AN - SCOPUS:0034700271

VL - 39

SP - 14150

EP - 14159

JO - Biochemistry

JF - Biochemistry

SN - 0006-2960

IS - 46

ER -