Intermachine differences in DXA measurements vary by skeletal site, and impact the assessment of low bone density in children

Babette S. Zemel, Halley Wasserman, Andrea Kelly, Bo Fan, John Shepherd, Joan Lappe, Vicente Gilsanz, Sharon Oberfield, Karen K. Winer, Heidi J. Kalkwarf

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Background: Bone mineral content (BMC) and areal-bone mineral density (aBMD) measurements of the lumbar spine (LS) and whole body less head (WBLH) by dual energy X-ray absorptiometry (DXA) are recommended for bone health assessment in children. Intermachine differences were not considered previously in formulating these recommendations. Methodology: DXA measurements of the LS, WBLH, total hip, femoral neck and distal 1/3 radius from the Bone Mineral Density in Childhood Study were examined. Healthy children, ages 6 to 16 years, from five clinical centers participated. The same spine, whole body, and femur phantoms were measured on each Center's DXA machine. Percentage of individuals with low BMC or aBMD (Z-score < −1.5) was determined. Clinical center differences were evaluated by analysis of covariance adjusting for height and BMI Z-score, calcium intake, physical activity, Tanner stage and bone age. Logistic regression assessed odds of low BMC or aBMD across clinical centers. Results: Significant differences among Clinical Centers (p < 0.05) were evident in adjusted mean BMC and aBMD Z-scores (n = 1503) for all skeletal sites. WBLH BMC and aBMD Z-scores had the greatest range across centers (−0.13 to 0.24, and −0.17 to 0.56, respectively). The percentage of children with Z-scores less than −1.5 varied among Clinical Centers from 1.9 [95%CI 0.8, 4.5] to 8.1 [95%CI 5.7, 11.3] for WBLH BMC, 1.1 [95%CI 0.4, 3.5] to 6.3 [95%CI 3.8, 10.1] for WBLH aBMD, and from 4.4 [95%CI 2.8, 7.0] to 12.6 [95%CI 9.3, 16.9] for distal 1/3 radius aBMD. For each skeletal site except total hip aBMD and femoral neck BMC, at least one center had significantly lower odds of low bone density. Conclusions: By design, our reference ranges capture intermachine variability. Most clinical centers don't know where their machine falls within the range of intermachine variability, and this may affect diagnosis of children evaluated for conditions that threaten bone health. Total hip scans showed the least, and whole body scans showed the most intermachine variability. Pediatric bone health assessment recommendations should recognize intermachine differences and address this important issue.

Original languageEnglish (US)
Article number115581
JournalBone
Volume141
DOIs
StatePublished - Dec 2020

All Science Journal Classification (ASJC) codes

  • Endocrinology, Diabetes and Metabolism
  • Histology
  • Physiology

Fingerprint

Dive into the research topics of 'Intermachine differences in DXA measurements vary by skeletal site, and impact the assessment of low bone density in children'. Together they form a unique fingerprint.

Cite this