Lipid peroxidation: Pathophysiological and pharmacological implications in the eye

Ya Fatou Njie-Mbye, Madhura Kulkarni-Chitnis, Catherine A. Opere, Aaron Barrett, Sunny E. Ohia

Research output: Contribution to journalReview article

29 Citations (Scopus)

Abstract

Oxygen-derived free radicals such as hydroxyl and hydroperoxyl species have been shown to oxidize phospholipids and other membrane lipid components leading to lipid peroxidation. In the eye, lipid peroxidation has been reported to play an important role in degenerative ocular diseases (age-related macular degeneration, cataract, glaucoma, diabetic retinopathy). Indeed, ocular tissues are prone to damage from reactive oxygen species due to stress from constant exposure of the eye to sunlight, atmospheric oxygen and environmental chemicals. Furthermore, free radical catalyzed peroxidation of long chain polyunsaturated acids (LCPUFAs) such as arachidonic acid and docosahexaenoic acid leads to generation of LCPUFA metabolites including isoprostanes and neuroprostanes that may further exert pharmacological/toxicological actions in ocular tissues. Evidence from literature supports the presence of endogenous defense mechanisms against reactive oxygen species in the eye, thereby presenting new avenues for the prevention and treatment of ocular degeneration. Hydrogen peroxide (H2O2) and synthetic peroxides can exert pharmacological and toxicological effects on tissues of the anterior uvea of several mammalian species. There is evidence suggesting that the retina, especially retinal ganglion cells can exhibit unique characteristics of antioxidant defense mechanisms. In the posterior segment of the eye, H2O2 and synthetic peroxides produce an inhibitory action on glutamate release (using [3H]-D-aspartate as a marker), in vitro and on the endogenous glutamate and glycine concentrations in vivo. In addition to peroxides, isoprostanes can elicit both excitatory and inhibitory effects on norepinephrine (NE) release from sympathetic nerves in isolated mammalian iris ciliary bodies. Whereas isoprostanes attenuate dopamine release from mammalian neural retina, in vitro, these novel arachidonic acid metabolites exhibit a biphasic regulatory effect on glutamate release from retina and can regulate amino acid neurotransmitter metabolism without inducing cell death in the retina. Furthermore, there appears to be an inhibitory role for neuroprostanes in the release of excitatory amino acid neurotransmitters in mammalian retina. The ability of peroxides and metabolites of LCPUFA to alter the integrity of neurotransmitter pools provides new potential target sites and pathways for the treatment of degenerative ocular diseases.

Original languageEnglish
Article numberArticle 366
JournalFrontiers in Physiology
Volume4 DEC
DOIs
StatePublished - 2013

Fingerprint

Lipid Peroxidation
Peroxides
Retina
Pharmacology
Isoprostanes
Neuroprostanes
Neurotransmitter Agents
Glutamic Acid
Eye Diseases
Arachidonic Acid
Toxicology
Free Radicals
Reactive Oxygen Species
Posterior Eye Segment
Uvea
Oxygen
D-Aspartic Acid
Ciliary Body
Excitatory Amino Acids
Retinal Ganglion Cells

All Science Journal Classification (ASJC) codes

  • Physiology
  • Physiology (medical)

Cite this

Lipid peroxidation : Pathophysiological and pharmacological implications in the eye. / Njie-Mbye, Ya Fatou; Kulkarni-Chitnis, Madhura; Opere, Catherine A.; Barrett, Aaron; Ohia, Sunny E.

In: Frontiers in Physiology, Vol. 4 DEC, Article 366, 2013.

Research output: Contribution to journalReview article

Njie-Mbye, Ya Fatou ; Kulkarni-Chitnis, Madhura ; Opere, Catherine A. ; Barrett, Aaron ; Ohia, Sunny E. / Lipid peroxidation : Pathophysiological and pharmacological implications in the eye. In: Frontiers in Physiology. 2013 ; Vol. 4 DEC.
@article{67f7e35804ce477e8580ea5fdad5cef1,
title = "Lipid peroxidation: Pathophysiological and pharmacological implications in the eye",
abstract = "Oxygen-derived free radicals such as hydroxyl and hydroperoxyl species have been shown to oxidize phospholipids and other membrane lipid components leading to lipid peroxidation. In the eye, lipid peroxidation has been reported to play an important role in degenerative ocular diseases (age-related macular degeneration, cataract, glaucoma, diabetic retinopathy). Indeed, ocular tissues are prone to damage from reactive oxygen species due to stress from constant exposure of the eye to sunlight, atmospheric oxygen and environmental chemicals. Furthermore, free radical catalyzed peroxidation of long chain polyunsaturated acids (LCPUFAs) such as arachidonic acid and docosahexaenoic acid leads to generation of LCPUFA metabolites including isoprostanes and neuroprostanes that may further exert pharmacological/toxicological actions in ocular tissues. Evidence from literature supports the presence of endogenous defense mechanisms against reactive oxygen species in the eye, thereby presenting new avenues for the prevention and treatment of ocular degeneration. Hydrogen peroxide (H2O2) and synthetic peroxides can exert pharmacological and toxicological effects on tissues of the anterior uvea of several mammalian species. There is evidence suggesting that the retina, especially retinal ganglion cells can exhibit unique characteristics of antioxidant defense mechanisms. In the posterior segment of the eye, H2O2 and synthetic peroxides produce an inhibitory action on glutamate release (using [3H]-D-aspartate as a marker), in vitro and on the endogenous glutamate and glycine concentrations in vivo. In addition to peroxides, isoprostanes can elicit both excitatory and inhibitory effects on norepinephrine (NE) release from sympathetic nerves in isolated mammalian iris ciliary bodies. Whereas isoprostanes attenuate dopamine release from mammalian neural retina, in vitro, these novel arachidonic acid metabolites exhibit a biphasic regulatory effect on glutamate release from retina and can regulate amino acid neurotransmitter metabolism without inducing cell death in the retina. Furthermore, there appears to be an inhibitory role for neuroprostanes in the release of excitatory amino acid neurotransmitters in mammalian retina. The ability of peroxides and metabolites of LCPUFA to alter the integrity of neurotransmitter pools provides new potential target sites and pathways for the treatment of degenerative ocular diseases.",
author = "Njie-Mbye, {Ya Fatou} and Madhura Kulkarni-Chitnis and Opere, {Catherine A.} and Aaron Barrett and Ohia, {Sunny E.}",
year = "2013",
doi = "10.3389/fphys.2013.00366",
language = "English",
volume = "4 DEC",
journal = "Frontiers in Physiology",
issn = "1664-042X",
publisher = "Frontiers Research Foundation",

}

TY - JOUR

T1 - Lipid peroxidation

T2 - Pathophysiological and pharmacological implications in the eye

AU - Njie-Mbye, Ya Fatou

AU - Kulkarni-Chitnis, Madhura

AU - Opere, Catherine A.

AU - Barrett, Aaron

AU - Ohia, Sunny E.

PY - 2013

Y1 - 2013

N2 - Oxygen-derived free radicals such as hydroxyl and hydroperoxyl species have been shown to oxidize phospholipids and other membrane lipid components leading to lipid peroxidation. In the eye, lipid peroxidation has been reported to play an important role in degenerative ocular diseases (age-related macular degeneration, cataract, glaucoma, diabetic retinopathy). Indeed, ocular tissues are prone to damage from reactive oxygen species due to stress from constant exposure of the eye to sunlight, atmospheric oxygen and environmental chemicals. Furthermore, free radical catalyzed peroxidation of long chain polyunsaturated acids (LCPUFAs) such as arachidonic acid and docosahexaenoic acid leads to generation of LCPUFA metabolites including isoprostanes and neuroprostanes that may further exert pharmacological/toxicological actions in ocular tissues. Evidence from literature supports the presence of endogenous defense mechanisms against reactive oxygen species in the eye, thereby presenting new avenues for the prevention and treatment of ocular degeneration. Hydrogen peroxide (H2O2) and synthetic peroxides can exert pharmacological and toxicological effects on tissues of the anterior uvea of several mammalian species. There is evidence suggesting that the retina, especially retinal ganglion cells can exhibit unique characteristics of antioxidant defense mechanisms. In the posterior segment of the eye, H2O2 and synthetic peroxides produce an inhibitory action on glutamate release (using [3H]-D-aspartate as a marker), in vitro and on the endogenous glutamate and glycine concentrations in vivo. In addition to peroxides, isoprostanes can elicit both excitatory and inhibitory effects on norepinephrine (NE) release from sympathetic nerves in isolated mammalian iris ciliary bodies. Whereas isoprostanes attenuate dopamine release from mammalian neural retina, in vitro, these novel arachidonic acid metabolites exhibit a biphasic regulatory effect on glutamate release from retina and can regulate amino acid neurotransmitter metabolism without inducing cell death in the retina. Furthermore, there appears to be an inhibitory role for neuroprostanes in the release of excitatory amino acid neurotransmitters in mammalian retina. The ability of peroxides and metabolites of LCPUFA to alter the integrity of neurotransmitter pools provides new potential target sites and pathways for the treatment of degenerative ocular diseases.

AB - Oxygen-derived free radicals such as hydroxyl and hydroperoxyl species have been shown to oxidize phospholipids and other membrane lipid components leading to lipid peroxidation. In the eye, lipid peroxidation has been reported to play an important role in degenerative ocular diseases (age-related macular degeneration, cataract, glaucoma, diabetic retinopathy). Indeed, ocular tissues are prone to damage from reactive oxygen species due to stress from constant exposure of the eye to sunlight, atmospheric oxygen and environmental chemicals. Furthermore, free radical catalyzed peroxidation of long chain polyunsaturated acids (LCPUFAs) such as arachidonic acid and docosahexaenoic acid leads to generation of LCPUFA metabolites including isoprostanes and neuroprostanes that may further exert pharmacological/toxicological actions in ocular tissues. Evidence from literature supports the presence of endogenous defense mechanisms against reactive oxygen species in the eye, thereby presenting new avenues for the prevention and treatment of ocular degeneration. Hydrogen peroxide (H2O2) and synthetic peroxides can exert pharmacological and toxicological effects on tissues of the anterior uvea of several mammalian species. There is evidence suggesting that the retina, especially retinal ganglion cells can exhibit unique characteristics of antioxidant defense mechanisms. In the posterior segment of the eye, H2O2 and synthetic peroxides produce an inhibitory action on glutamate release (using [3H]-D-aspartate as a marker), in vitro and on the endogenous glutamate and glycine concentrations in vivo. In addition to peroxides, isoprostanes can elicit both excitatory and inhibitory effects on norepinephrine (NE) release from sympathetic nerves in isolated mammalian iris ciliary bodies. Whereas isoprostanes attenuate dopamine release from mammalian neural retina, in vitro, these novel arachidonic acid metabolites exhibit a biphasic regulatory effect on glutamate release from retina and can regulate amino acid neurotransmitter metabolism without inducing cell death in the retina. Furthermore, there appears to be an inhibitory role for neuroprostanes in the release of excitatory amino acid neurotransmitters in mammalian retina. The ability of peroxides and metabolites of LCPUFA to alter the integrity of neurotransmitter pools provides new potential target sites and pathways for the treatment of degenerative ocular diseases.

UR - http://www.scopus.com/inward/record.url?scp=84891711746&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84891711746&partnerID=8YFLogxK

U2 - 10.3389/fphys.2013.00366

DO - 10.3389/fphys.2013.00366

M3 - Review article

AN - SCOPUS:84891711746

VL - 4 DEC

JO - Frontiers in Physiology

JF - Frontiers in Physiology

SN - 1664-042X

M1 - Article 366

ER -