TY - JOUR
T1 - Merging antimicrobial and visible emission properties within 1,3,4-trisubstituted-1,2,3-triazolium salts
AU - Lejcher, Connor A.
AU - Villa, Eric M.
AU - Fletcher, James T.
N1 - Funding Information:
This publication was made possible by grants from the National Institute for General Medical Science (NIGMS) (5P20GM103427), a component of the National Institutes of Health (NIH), and its contents are the sole responsibility of the authors and do not necessarily represent the official views of NIGMS or NIH.
Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2022/3
Y1 - 2022/3
N2 - Bioactive molecules displaying visible wavelength emission can be useful for bioimaging, chemosensing and photodynamic therapy applications. Reported herein are 1,3,4-trisubsituted-1,2,3-triazolium salts displaying both antimicrobial and visible emission properties. Using a click chemistry approach, 2-fluorenyl, 1-naphthyl, 2-naphthyl, 2-anthracenyl and 1-pyrenyl units were incorporated at the N1 position, imparting visible emission properties to their triazolium bromide salts with Stokes shifts greater than 100 nm relative to the emission of their triazole precursors. The increasing size of such hydrophobic aryl units impacts minimum inhibitory concentration (MIC) values against Gram-positive bacteria, Gram-negative bacteria and yeast, and can be counterbalanced by hydrophobic substituent variation at other positions of the molecule in order to preserve bioactivity. Among the series of compounds studied are analogs displaying blue, green and yellow colored emission and MIC values as low as 0.4 μM (Gram-positive bacteria), 8 μM (Gram-negative bacteria) and 2 μM (yeast). XRD analysis validates the regioselective benzylation at the N3 position of the 1,2,3-triazole ring and the ability of such compounds to associate through dimeric intermolecular π-stacking interactions. [Figure not available: see fulltext.]
AB - Bioactive molecules displaying visible wavelength emission can be useful for bioimaging, chemosensing and photodynamic therapy applications. Reported herein are 1,3,4-trisubsituted-1,2,3-triazolium salts displaying both antimicrobial and visible emission properties. Using a click chemistry approach, 2-fluorenyl, 1-naphthyl, 2-naphthyl, 2-anthracenyl and 1-pyrenyl units were incorporated at the N1 position, imparting visible emission properties to their triazolium bromide salts with Stokes shifts greater than 100 nm relative to the emission of their triazole precursors. The increasing size of such hydrophobic aryl units impacts minimum inhibitory concentration (MIC) values against Gram-positive bacteria, Gram-negative bacteria and yeast, and can be counterbalanced by hydrophobic substituent variation at other positions of the molecule in order to preserve bioactivity. Among the series of compounds studied are analogs displaying blue, green and yellow colored emission and MIC values as low as 0.4 μM (Gram-positive bacteria), 8 μM (Gram-negative bacteria) and 2 μM (yeast). XRD analysis validates the regioselective benzylation at the N3 position of the 1,2,3-triazole ring and the ability of such compounds to associate through dimeric intermolecular π-stacking interactions. [Figure not available: see fulltext.]
UR - http://www.scopus.com/inward/record.url?scp=85124254248&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85124254248&partnerID=8YFLogxK
U2 - 10.1007/s00044-022-02855-5
DO - 10.1007/s00044-022-02855-5
M3 - Article
AN - SCOPUS:85124254248
VL - 31
SP - 474
EP - 484
JO - Medicinal Chemistry Research
JF - Medicinal Chemistry Research
SN - 1054-2523
IS - 3
ER -