Neural crest development

the interplay between morphogenesis and cell differentiation.

C. A. Erickson, Mark Reedy

Research output: Contribution to journalReview article

83 Citations (Scopus)

Abstract

The final pattern of tissues established during embryogenesis reflects the outcome of two developmental processes: differentiation and morphogenesis. Avian neural crest cells are an excellent system in which to study this interaction. In the first phase of neural crest cell migration, neural crest cells separate from the neural epithelium via an epithelial-mesenchymal transformation. We present three models to account for this process: (1) separation by asymmetric mitosis, (2) separation by generating tractional force in order to rupture cell adhesions and (3) loss of expression or function of cell-cell adhesion molecules that keep the presumptive neural crest cells tethered to the neural epithelium. Evidence is presented that the segregation of the neural crest lineage apart from the neural epithelium is caused by the epithelial-mesenchymal transformation. Once they have detached from the neural tube, neural crest cells take two pathways in the trunk of the chick embryo: (1) the ventral path between the neural tube and somite, where neural crest cells give rise to neurons and glial cells of the peripheral nervous systems, and (2) the dorsolateral path between the ectoderm and dermamyotome of the somite, where they differentiate into pigment cells of the skin. We present data to suggest that the migration and differentiation along the ventral path is controlled primarily by environmental cues, which we refer to as the environment-directed model of neural crest morphogenesis. Conversely, only melanoblasts can migrate into the dorsolateral space, and the ability to invade that path is dependent upon their early specification as melanoblasts. We call this the phenotype-directed model for neural crest cell migration and suggest that this latter model for the positioning of neural crest derivatives in the embryo may be more common than previously suspected. These observations invite a re-examination of patterning of other crest derivates, which previously were believed to be controlled by environmental cues.

Original languageEnglish
Pages (from-to)177-209
Number of pages33
JournalCurrent Topics in Developmental Biology
Volume40
StatePublished - 1998

Fingerprint

Neural Crest
Morphogenesis
Cell Differentiation
Somites
Neural Tube
Epithelial-Mesenchymal Transition
Epithelium
Cell Movement
Cues
Ectoderm
Aptitude
Peripheral Nervous System
Cell Adhesion Molecules
Chick Embryo
Mitosis
Cell Adhesion
Neuroglia
Embryonic Development
Rupture
Embryonic Structures

All Science Journal Classification (ASJC) codes

  • Developmental Biology

Cite this

Neural crest development : the interplay between morphogenesis and cell differentiation. / Erickson, C. A.; Reedy, Mark.

In: Current Topics in Developmental Biology, Vol. 40, 1998, p. 177-209.

Research output: Contribution to journalReview article

@article{6be6b16e2cbc4209b44b506a3d61f847,
title = "Neural crest development: the interplay between morphogenesis and cell differentiation.",
abstract = "The final pattern of tissues established during embryogenesis reflects the outcome of two developmental processes: differentiation and morphogenesis. Avian neural crest cells are an excellent system in which to study this interaction. In the first phase of neural crest cell migration, neural crest cells separate from the neural epithelium via an epithelial-mesenchymal transformation. We present three models to account for this process: (1) separation by asymmetric mitosis, (2) separation by generating tractional force in order to rupture cell adhesions and (3) loss of expression or function of cell-cell adhesion molecules that keep the presumptive neural crest cells tethered to the neural epithelium. Evidence is presented that the segregation of the neural crest lineage apart from the neural epithelium is caused by the epithelial-mesenchymal transformation. Once they have detached from the neural tube, neural crest cells take two pathways in the trunk of the chick embryo: (1) the ventral path between the neural tube and somite, where neural crest cells give rise to neurons and glial cells of the peripheral nervous systems, and (2) the dorsolateral path between the ectoderm and dermamyotome of the somite, where they differentiate into pigment cells of the skin. We present data to suggest that the migration and differentiation along the ventral path is controlled primarily by environmental cues, which we refer to as the environment-directed model of neural crest morphogenesis. Conversely, only melanoblasts can migrate into the dorsolateral space, and the ability to invade that path is dependent upon their early specification as melanoblasts. We call this the phenotype-directed model for neural crest cell migration and suggest that this latter model for the positioning of neural crest derivatives in the embryo may be more common than previously suspected. These observations invite a re-examination of patterning of other crest derivates, which previously were believed to be controlled by environmental cues.",
author = "Erickson, {C. A.} and Mark Reedy",
year = "1998",
language = "English",
volume = "40",
pages = "177--209",
journal = "Current Topics in Developmental Biology",
issn = "0070-2153",
publisher = "Academic Press Inc.",

}

TY - JOUR

T1 - Neural crest development

T2 - the interplay between morphogenesis and cell differentiation.

AU - Erickson, C. A.

AU - Reedy, Mark

PY - 1998

Y1 - 1998

N2 - The final pattern of tissues established during embryogenesis reflects the outcome of two developmental processes: differentiation and morphogenesis. Avian neural crest cells are an excellent system in which to study this interaction. In the first phase of neural crest cell migration, neural crest cells separate from the neural epithelium via an epithelial-mesenchymal transformation. We present three models to account for this process: (1) separation by asymmetric mitosis, (2) separation by generating tractional force in order to rupture cell adhesions and (3) loss of expression or function of cell-cell adhesion molecules that keep the presumptive neural crest cells tethered to the neural epithelium. Evidence is presented that the segregation of the neural crest lineage apart from the neural epithelium is caused by the epithelial-mesenchymal transformation. Once they have detached from the neural tube, neural crest cells take two pathways in the trunk of the chick embryo: (1) the ventral path between the neural tube and somite, where neural crest cells give rise to neurons and glial cells of the peripheral nervous systems, and (2) the dorsolateral path between the ectoderm and dermamyotome of the somite, where they differentiate into pigment cells of the skin. We present data to suggest that the migration and differentiation along the ventral path is controlled primarily by environmental cues, which we refer to as the environment-directed model of neural crest morphogenesis. Conversely, only melanoblasts can migrate into the dorsolateral space, and the ability to invade that path is dependent upon their early specification as melanoblasts. We call this the phenotype-directed model for neural crest cell migration and suggest that this latter model for the positioning of neural crest derivatives in the embryo may be more common than previously suspected. These observations invite a re-examination of patterning of other crest derivates, which previously were believed to be controlled by environmental cues.

AB - The final pattern of tissues established during embryogenesis reflects the outcome of two developmental processes: differentiation and morphogenesis. Avian neural crest cells are an excellent system in which to study this interaction. In the first phase of neural crest cell migration, neural crest cells separate from the neural epithelium via an epithelial-mesenchymal transformation. We present three models to account for this process: (1) separation by asymmetric mitosis, (2) separation by generating tractional force in order to rupture cell adhesions and (3) loss of expression or function of cell-cell adhesion molecules that keep the presumptive neural crest cells tethered to the neural epithelium. Evidence is presented that the segregation of the neural crest lineage apart from the neural epithelium is caused by the epithelial-mesenchymal transformation. Once they have detached from the neural tube, neural crest cells take two pathways in the trunk of the chick embryo: (1) the ventral path between the neural tube and somite, where neural crest cells give rise to neurons and glial cells of the peripheral nervous systems, and (2) the dorsolateral path between the ectoderm and dermamyotome of the somite, where they differentiate into pigment cells of the skin. We present data to suggest that the migration and differentiation along the ventral path is controlled primarily by environmental cues, which we refer to as the environment-directed model of neural crest morphogenesis. Conversely, only melanoblasts can migrate into the dorsolateral space, and the ability to invade that path is dependent upon their early specification as melanoblasts. We call this the phenotype-directed model for neural crest cell migration and suggest that this latter model for the positioning of neural crest derivatives in the embryo may be more common than previously suspected. These observations invite a re-examination of patterning of other crest derivates, which previously were believed to be controlled by environmental cues.

UR - http://www.scopus.com/inward/record.url?scp=0031603510&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031603510&partnerID=8YFLogxK

M3 - Review article

VL - 40

SP - 177

EP - 209

JO - Current Topics in Developmental Biology

JF - Current Topics in Developmental Biology

SN - 0070-2153

ER -