On categories of fuzzy modules

S. R. López-Permouth, Davender S. Malik

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

We show that for any ring R the category R-fzmod of fuzzy left R-modules is a top category and an additive category. R-fzmod has products, coproducts, kernels and cokernels, but it is not an abelian category. Projective, injective and free fuzzy left R-modules are characterized.

Original languageEnglish
Pages (from-to)211-220
Number of pages10
JournalInformation Sciences
Volume52
Issue number2
DOIs
StatePublished - 1990

Fingerprint

Module
Abelian Category
Coproducts
Injective
kernel
Ring
Kernel

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Computer Science Applications
  • Information Systems
  • Information Systems and Management
  • Statistics, Probability and Uncertainty
  • Electrical and Electronic Engineering
  • Statistics and Probability

Cite this

On categories of fuzzy modules. / López-Permouth, S. R.; Malik, Davender S.

In: Information Sciences, Vol. 52, No. 2, 1990, p. 211-220.

Research output: Contribution to journalArticle

López-Permouth, S. R. ; Malik, Davender S. / On categories of fuzzy modules. In: Information Sciences. 1990 ; Vol. 52, No. 2. pp. 211-220.
@article{f7def72f63894b5290461f324415e734,
title = "On categories of fuzzy modules",
abstract = "We show that for any ring R the category R-fzmod of fuzzy left R-modules is a top category and an additive category. R-fzmod has products, coproducts, kernels and cokernels, but it is not an abelian category. Projective, injective and free fuzzy left R-modules are characterized.",
author = "L{\'o}pez-Permouth, {S. R.} and Malik, {Davender S.}",
year = "1990",
doi = "10.1016/0020-0255(90)90043-A",
language = "English",
volume = "52",
pages = "211--220",
journal = "Information Sciences",
issn = "0020-0255",
publisher = "Elsevier Inc.",
number = "2",

}

TY - JOUR

T1 - On categories of fuzzy modules

AU - López-Permouth, S. R.

AU - Malik, Davender S.

PY - 1990

Y1 - 1990

N2 - We show that for any ring R the category R-fzmod of fuzzy left R-modules is a top category and an additive category. R-fzmod has products, coproducts, kernels and cokernels, but it is not an abelian category. Projective, injective and free fuzzy left R-modules are characterized.

AB - We show that for any ring R the category R-fzmod of fuzzy left R-modules is a top category and an additive category. R-fzmod has products, coproducts, kernels and cokernels, but it is not an abelian category. Projective, injective and free fuzzy left R-modules are characterized.

UR - http://www.scopus.com/inward/record.url?scp=0025521090&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0025521090&partnerID=8YFLogxK

U2 - 10.1016/0020-0255(90)90043-A

DO - 10.1016/0020-0255(90)90043-A

M3 - Article

VL - 52

SP - 211

EP - 220

JO - Information Sciences

JF - Information Sciences

SN - 0020-0255

IS - 2

ER -