TY - JOUR
T1 - Pancreatic cancer and the FAMMM syndrome
AU - Lynch, Henry T.
AU - Fusaro, Ramon M.
AU - Lynch, Jane F.
AU - Brand, Randall
N1 - Funding Information:
Acknowledgments This article was supported by revenue from Nebraska cigarette taxes awarded to Creighton University by the Nebraska Department of Health and Human Services. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the State of Nebraska or the Nebraska Department of Health and Human Services. Support was also given by the Jacqueline Seroussi Memorial Foundation for Cancer Research, and by the National Institutes of Health through grant #1U01 CA 86389. Dr. Henry Lynch’s work is partially funded through the Charles F. and Mary C. Heider Chair in Cancer Research, which he holds at Creighton University.
PY - 2008
Y1 - 2008
N2 - Hereditary cancer syndromes provide excellent models for molecular genetic studies that may aid significantly in case detection, surveillance, and management. Ultimately, molecularly based designer pharmaceuticals may emerge from this research, such as the case of trastuzumab (Herceptin) in HER-2/neu positive breast cancer, and imatinib (Gleevec) in chronic myelocytic leukemia and gastrointestinal stromal tumors. Importantly, these molecular findings may fuel significant clues to cancer control. This background is mentioned since surveillance and management of pancreatic cancer, a major concern of this manuscript, has been uniformly unsuccessful as evidenced by the close correspondence between its incidence and its mortality. Yet knowledge about its genetic and molecular pathology will hopefully ameliorate this vexing problem. One molecular genetic clue is the recently identified palladin mutation in two pancreatic cancer prone families. However, caution must be used toward the palladin mutation, as several recent publications have questioned its significance as a pancreatic cancer causing mutation. We provide a concise description of pancreatic cancer in concert with malignant melanoma in the familial atypical multiple mole melanoma (FAMMM) syndrome as a potential preventive model. This knowledge should help clinicians and basic scientists seize on the opportunity to develop more sensitive and specific screening and management programs in this disease; while a relatively small subset of pancreatic cancer may be readily identifiable through its FAMMM phenotype, coupled with its CDKN2A mutation, this hereditary disorder, given a keen knowledge of its natural history and molecular genetics, may prove to be an effective clinical preventive model.
AB - Hereditary cancer syndromes provide excellent models for molecular genetic studies that may aid significantly in case detection, surveillance, and management. Ultimately, molecularly based designer pharmaceuticals may emerge from this research, such as the case of trastuzumab (Herceptin) in HER-2/neu positive breast cancer, and imatinib (Gleevec) in chronic myelocytic leukemia and gastrointestinal stromal tumors. Importantly, these molecular findings may fuel significant clues to cancer control. This background is mentioned since surveillance and management of pancreatic cancer, a major concern of this manuscript, has been uniformly unsuccessful as evidenced by the close correspondence between its incidence and its mortality. Yet knowledge about its genetic and molecular pathology will hopefully ameliorate this vexing problem. One molecular genetic clue is the recently identified palladin mutation in two pancreatic cancer prone families. However, caution must be used toward the palladin mutation, as several recent publications have questioned its significance as a pancreatic cancer causing mutation. We provide a concise description of pancreatic cancer in concert with malignant melanoma in the familial atypical multiple mole melanoma (FAMMM) syndrome as a potential preventive model. This knowledge should help clinicians and basic scientists seize on the opportunity to develop more sensitive and specific screening and management programs in this disease; while a relatively small subset of pancreatic cancer may be readily identifiable through its FAMMM phenotype, coupled with its CDKN2A mutation, this hereditary disorder, given a keen knowledge of its natural history and molecular genetics, may prove to be an effective clinical preventive model.
UR - http://www.scopus.com/inward/record.url?scp=46449134676&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=46449134676&partnerID=8YFLogxK
U2 - 10.1007/s10689-007-9166-4
DO - 10.1007/s10689-007-9166-4
M3 - Article
C2 - 17992582
AN - SCOPUS:46449134676
VL - 7
SP - 103
EP - 112
JO - Familial Cancer
JF - Familial Cancer
SN - 1389-9600
IS - 1
ER -