Pathogenesis of allergic airway inflammation

Devendra K. Agrawal, Zhifei Shao

Research output: Contribution to journalReview article

98 Scopus citations

Abstract

Advances have been made in defining the mechanisms for the control of allergic airway inflammation in response to inhaled antigens. Several genes, including ADAM33, DPP10, PHF11, GPRA, TIM-1, PDE4D, OPN3, and ORMDL3, have been implicated in the pathogenesis and susceptibility to atopy and asthma. Growing evidence associates asthma with a systemic propensity for allergic T-helper type 2 cytokines. Disordered coagulation and fibrinolysis also exacerbate asthma symptoms. Balance among functionally distinct dendritic cell subsets contributes to the outcome of T-cell-mediated immunity. Allergen-specific T-regulatory cells play a pivotal role in the development of tolerance to allergens and immune suppression. The major emphasis on immunotherapy for asthma during the past decade has been to direct the immune response to a type 1 response, or immune tolerance. In this review, we discuss the current information on the pathogenesis of allergic airway inflammation and potential immunotherapy, which could be beneficial in the treatment of airway inflammation, allergy, and asthma.

Original languageEnglish
Pages (from-to)39-48
Number of pages10
JournalCurrent Allergy and Asthma Reports
Volume10
Issue number1
DOIs
StatePublished - Jan 2010

All Science Journal Classification (ASJC) codes

  • Immunology and Allergy
  • Pulmonary and Respiratory Medicine

Fingerprint Dive into the research topics of 'Pathogenesis of allergic airway inflammation'. Together they form a unique fingerprint.

  • Cite this