Abstract
Upon apoptotic stimuli, lysosomal proteases, including cathepsins and chymotrypsin, are released into cytosol due to lysosomal membrane permeabilization (LMP), where they trigger apoptosis via the lysosomal-mitochondrial pathway of apoptosis. Herein, the mechanism of LMP was investigated. We found that caspase 8-cleaved Bid (tBid) could result in LMP directly. Although Bax or Bak might modestly enhance tBid-triggered LMP, they are not necessary for LMP. To study this further, large unilamellar vesicles (LUVs), model membranes mimicking the lipid constitution of lysosomes, were used to reconstitute the membrane permeabilization process in vitro. We found that phosphatidic acid (PA), one of the major acidic phospholipids found in lysosome membrane, is essential for tBid-induced LMP. PA facilitates the insertion of tBid deeply into lipid bilayers, where it undergoes homo-oligomerization and triggers the formation of highly curved nonbilayer lipid phases. These events induce LMP via pore formation mechanisms because encapsulated fluorescein-conjugated dextran (FD)-20 was released more significantly than FD-70 or FD-250 from LUVs due to its smaller molecular size. On the basis of these data, we proposed tBid-PA interactions in the lysosomal membranes form lipidic pores and result in LMP. We further noted that chymotrypsin-cleaved Bid is more potent than tBid at binding to PA, inserting into the lipid bilayer, and promoting LMP. This amplification mechanism likely contributes to the culmination of apoptotic signaling.
Original language | English |
---|---|
Pages (from-to) | 2102-2114 |
Number of pages | 13 |
Journal | Journal of Lipid Research |
Volume | 53 |
Issue number | 10 |
DOIs | |
State | Published - Oct 2012 |
Fingerprint
All Science Journal Classification (ASJC) codes
- Biochemistry
- Cell Biology
- Endocrinology
Cite this
Phosphatidic acid mediates the targeting of tBid to induce lysosomal membrane permeabilization and apoptosis. / Zhao, Kai; Zhou, Hejiang; Zhao, Xingyu; Wolff, Dennis W.; Tu, Yaping; Liu, Huili; Wei, Taotao; Yang, Fuyu.
In: Journal of Lipid Research, Vol. 53, No. 10, 10.2012, p. 2102-2114.Research output: Contribution to journal › Article
}
TY - JOUR
T1 - Phosphatidic acid mediates the targeting of tBid to induce lysosomal membrane permeabilization and apoptosis
AU - Zhao, Kai
AU - Zhou, Hejiang
AU - Zhao, Xingyu
AU - Wolff, Dennis W.
AU - Tu, Yaping
AU - Liu, Huili
AU - Wei, Taotao
AU - Yang, Fuyu
PY - 2012/10
Y1 - 2012/10
N2 - Upon apoptotic stimuli, lysosomal proteases, including cathepsins and chymotrypsin, are released into cytosol due to lysosomal membrane permeabilization (LMP), where they trigger apoptosis via the lysosomal-mitochondrial pathway of apoptosis. Herein, the mechanism of LMP was investigated. We found that caspase 8-cleaved Bid (tBid) could result in LMP directly. Although Bax or Bak might modestly enhance tBid-triggered LMP, they are not necessary for LMP. To study this further, large unilamellar vesicles (LUVs), model membranes mimicking the lipid constitution of lysosomes, were used to reconstitute the membrane permeabilization process in vitro. We found that phosphatidic acid (PA), one of the major acidic phospholipids found in lysosome membrane, is essential for tBid-induced LMP. PA facilitates the insertion of tBid deeply into lipid bilayers, where it undergoes homo-oligomerization and triggers the formation of highly curved nonbilayer lipid phases. These events induce LMP via pore formation mechanisms because encapsulated fluorescein-conjugated dextran (FD)-20 was released more significantly than FD-70 or FD-250 from LUVs due to its smaller molecular size. On the basis of these data, we proposed tBid-PA interactions in the lysosomal membranes form lipidic pores and result in LMP. We further noted that chymotrypsin-cleaved Bid is more potent than tBid at binding to PA, inserting into the lipid bilayer, and promoting LMP. This amplification mechanism likely contributes to the culmination of apoptotic signaling.
AB - Upon apoptotic stimuli, lysosomal proteases, including cathepsins and chymotrypsin, are released into cytosol due to lysosomal membrane permeabilization (LMP), where they trigger apoptosis via the lysosomal-mitochondrial pathway of apoptosis. Herein, the mechanism of LMP was investigated. We found that caspase 8-cleaved Bid (tBid) could result in LMP directly. Although Bax or Bak might modestly enhance tBid-triggered LMP, they are not necessary for LMP. To study this further, large unilamellar vesicles (LUVs), model membranes mimicking the lipid constitution of lysosomes, were used to reconstitute the membrane permeabilization process in vitro. We found that phosphatidic acid (PA), one of the major acidic phospholipids found in lysosome membrane, is essential for tBid-induced LMP. PA facilitates the insertion of tBid deeply into lipid bilayers, where it undergoes homo-oligomerization and triggers the formation of highly curved nonbilayer lipid phases. These events induce LMP via pore formation mechanisms because encapsulated fluorescein-conjugated dextran (FD)-20 was released more significantly than FD-70 or FD-250 from LUVs due to its smaller molecular size. On the basis of these data, we proposed tBid-PA interactions in the lysosomal membranes form lipidic pores and result in LMP. We further noted that chymotrypsin-cleaved Bid is more potent than tBid at binding to PA, inserting into the lipid bilayer, and promoting LMP. This amplification mechanism likely contributes to the culmination of apoptotic signaling.
UR - http://www.scopus.com/inward/record.url?scp=84866163429&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84866163429&partnerID=8YFLogxK
U2 - 10.1194/jlr.M027557
DO - 10.1194/jlr.M027557
M3 - Article
C2 - 22761256
AN - SCOPUS:84866163429
VL - 53
SP - 2102
EP - 2114
JO - Journal of Lipid Research
JF - Journal of Lipid Research
SN - 0022-2275
IS - 10
ER -