Point mutations in the inc antisense RNA gene are associated with increased plasmid copy number, expression of bla CMY-2 and resistance to piperacillin/tazobactam in Escherichia coli

Philip M. Kurpiel, Nancy D. Hanson

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

Background: High-level expression of AmpC β-lactamase genes is associated with increased resistance to β-lactam antibiotics. bla CMY-2 is the most prevalent plasmid-encoded AmpC gene found in Escherichia coli worldwide, and the gene is often found on plasmids of the IncI1 replicon type. Replication of IncI1 plasmids is controlled by antisense RNA transcribed from the gene inc, and nucleotide changes in the hairpin loop region of inc have been associated with increased plasmid copy number of IncI1 mini-plasmid constructs. The objective of this study was to determine the mechanism(s) responsible for increased bla CMY-2 expression in three piperacillin/tazobactam-selected E. coli mutant strains with bla CMY-2 encoded on a 100 kb IncI1 plasmid. Methods: Mutants were selected from a clinical E. coli strain by exposure to superinhibitory concentrations of piperacillin/tazobactam. β-Lactam susceptibilities were measured by agar dilution. Relative bla CMY-2 transcript levels, gene copy number and IncI1 plasmid copy number were measured by real-time PCR. The inc gene of all strains was sequenced. Results: Piperacillin/tazobactam MICs were 16- to 128-fold higher for mutant strains than for their parent strain. This increase in MICs correlated with 3- to 13-fold increases in bla CMY-2 gene expression, bla CMY-2 copy number and IncI1 plasmid copy number. Two mutants with 8- and 13-fold increases in IncI1 copy number had single point mutations located within the hairpin loop region of inc. Conclusions: These findings demonstrate that inc point mutations can be associated with increased copy number of a 100 kb IncI1 plasmid, and lead to increased bla CMY-2 expression and piperacillin/tazobactam resistance.

Original languageEnglish
Article numberdkr479
Pages (from-to)339-345
Number of pages7
JournalJournal of Antimicrobial Chemotherapy
Volume67
Issue number2
DOIs
StatePublished - Feb 2012

Fingerprint

Antisense RNA
Point Mutation
Plasmids
Escherichia coli
Genes
Lactams
tazobactam drug combination piperacillin
beta-lactamase CMY-2
Replicon
Gene Dosage
Agar
Real-Time Polymerase Chain Reaction
Nucleotides
Anti-Bacterial Agents
Gene Expression

All Science Journal Classification (ASJC) codes

  • Pharmacology
  • Pharmacology (medical)
  • Infectious Diseases

Cite this

@article{ffddcff7299e47cb8a3c45bef33f01d7,
title = "Point mutations in the inc antisense RNA gene are associated with increased plasmid copy number, expression of bla CMY-2 and resistance to piperacillin/tazobactam in Escherichia coli",
abstract = "Background: High-level expression of AmpC β-lactamase genes is associated with increased resistance to β-lactam antibiotics. bla CMY-2 is the most prevalent plasmid-encoded AmpC gene found in Escherichia coli worldwide, and the gene is often found on plasmids of the IncI1 replicon type. Replication of IncI1 plasmids is controlled by antisense RNA transcribed from the gene inc, and nucleotide changes in the hairpin loop region of inc have been associated with increased plasmid copy number of IncI1 mini-plasmid constructs. The objective of this study was to determine the mechanism(s) responsible for increased bla CMY-2 expression in three piperacillin/tazobactam-selected E. coli mutant strains with bla CMY-2 encoded on a 100 kb IncI1 plasmid. Methods: Mutants were selected from a clinical E. coli strain by exposure to superinhibitory concentrations of piperacillin/tazobactam. β-Lactam susceptibilities were measured by agar dilution. Relative bla CMY-2 transcript levels, gene copy number and IncI1 plasmid copy number were measured by real-time PCR. The inc gene of all strains was sequenced. Results: Piperacillin/tazobactam MICs were 16- to 128-fold higher for mutant strains than for their parent strain. This increase in MICs correlated with 3- to 13-fold increases in bla CMY-2 gene expression, bla CMY-2 copy number and IncI1 plasmid copy number. Two mutants with 8- and 13-fold increases in IncI1 copy number had single point mutations located within the hairpin loop region of inc. Conclusions: These findings demonstrate that inc point mutations can be associated with increased copy number of a 100 kb IncI1 plasmid, and lead to increased bla CMY-2 expression and piperacillin/tazobactam resistance.",
author = "Kurpiel, {Philip M.} and Hanson, {Nancy D.}",
year = "2012",
month = "2",
doi = "10.1093/jac/dkr479",
language = "English",
volume = "67",
pages = "339--345",
journal = "Journal of Antimicrobial Chemotherapy",
issn = "0305-7453",
publisher = "Oxford University Press",
number = "2",

}

TY - JOUR

T1 - Point mutations in the inc antisense RNA gene are associated with increased plasmid copy number, expression of bla CMY-2 and resistance to piperacillin/tazobactam in Escherichia coli

AU - Kurpiel, Philip M.

AU - Hanson, Nancy D.

PY - 2012/2

Y1 - 2012/2

N2 - Background: High-level expression of AmpC β-lactamase genes is associated with increased resistance to β-lactam antibiotics. bla CMY-2 is the most prevalent plasmid-encoded AmpC gene found in Escherichia coli worldwide, and the gene is often found on plasmids of the IncI1 replicon type. Replication of IncI1 plasmids is controlled by antisense RNA transcribed from the gene inc, and nucleotide changes in the hairpin loop region of inc have been associated with increased plasmid copy number of IncI1 mini-plasmid constructs. The objective of this study was to determine the mechanism(s) responsible for increased bla CMY-2 expression in three piperacillin/tazobactam-selected E. coli mutant strains with bla CMY-2 encoded on a 100 kb IncI1 plasmid. Methods: Mutants were selected from a clinical E. coli strain by exposure to superinhibitory concentrations of piperacillin/tazobactam. β-Lactam susceptibilities were measured by agar dilution. Relative bla CMY-2 transcript levels, gene copy number and IncI1 plasmid copy number were measured by real-time PCR. The inc gene of all strains was sequenced. Results: Piperacillin/tazobactam MICs were 16- to 128-fold higher for mutant strains than for their parent strain. This increase in MICs correlated with 3- to 13-fold increases in bla CMY-2 gene expression, bla CMY-2 copy number and IncI1 plasmid copy number. Two mutants with 8- and 13-fold increases in IncI1 copy number had single point mutations located within the hairpin loop region of inc. Conclusions: These findings demonstrate that inc point mutations can be associated with increased copy number of a 100 kb IncI1 plasmid, and lead to increased bla CMY-2 expression and piperacillin/tazobactam resistance.

AB - Background: High-level expression of AmpC β-lactamase genes is associated with increased resistance to β-lactam antibiotics. bla CMY-2 is the most prevalent plasmid-encoded AmpC gene found in Escherichia coli worldwide, and the gene is often found on plasmids of the IncI1 replicon type. Replication of IncI1 plasmids is controlled by antisense RNA transcribed from the gene inc, and nucleotide changes in the hairpin loop region of inc have been associated with increased plasmid copy number of IncI1 mini-plasmid constructs. The objective of this study was to determine the mechanism(s) responsible for increased bla CMY-2 expression in three piperacillin/tazobactam-selected E. coli mutant strains with bla CMY-2 encoded on a 100 kb IncI1 plasmid. Methods: Mutants were selected from a clinical E. coli strain by exposure to superinhibitory concentrations of piperacillin/tazobactam. β-Lactam susceptibilities were measured by agar dilution. Relative bla CMY-2 transcript levels, gene copy number and IncI1 plasmid copy number were measured by real-time PCR. The inc gene of all strains was sequenced. Results: Piperacillin/tazobactam MICs were 16- to 128-fold higher for mutant strains than for their parent strain. This increase in MICs correlated with 3- to 13-fold increases in bla CMY-2 gene expression, bla CMY-2 copy number and IncI1 plasmid copy number. Two mutants with 8- and 13-fold increases in IncI1 copy number had single point mutations located within the hairpin loop region of inc. Conclusions: These findings demonstrate that inc point mutations can be associated with increased copy number of a 100 kb IncI1 plasmid, and lead to increased bla CMY-2 expression and piperacillin/tazobactam resistance.

UR - http://www.scopus.com/inward/record.url?scp=84855846008&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84855846008&partnerID=8YFLogxK

U2 - 10.1093/jac/dkr479

DO - 10.1093/jac/dkr479

M3 - Article

C2 - 22117029

AN - SCOPUS:84855846008

VL - 67

SP - 339

EP - 345

JO - Journal of Antimicrobial Chemotherapy

JF - Journal of Antimicrobial Chemotherapy

SN - 0305-7453

IS - 2

M1 - dkr479

ER -