Preparation, Characterization and Antioxidant Evaluation of Poorly Soluble Polyphenol-Loaded Nanoparticles for Cataract Treatment

Deepal Vora, Segewkal Heruye, Dunesh Kumari, Catherine A. Opere, Harsh Chauhan

Research output: Contribution to journalArticle

Abstract

Cataract, one of the leading causes of blindness worldwide, is a condition in which complete or partial opacity develops in the lens of the eyes, thereby impairing vision. This study aimed to examine the potential therapeutic and protective effects of poorly soluble polyphenols like curcumin, resveratrol, and dibenzoylmethane, known to possess significant antioxidant activity. The polyphenols were loaded into novel lipid-cyclodextrin-based nanoparticles and characterized by particle size, polydispersity index, differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, scanning electron microscopy (SEM), entrapment efficiency, and release studies. Ferric-reducing ability of plasma and 2,2-diphenyl-1-picrylhydrazyl chemical assays were used to evaluate their antioxidant properties based on their free radical quenching ability. Biochemical in vitro assays were used to examine these polyphenols on hydrogen peroxide-induced formation of cataracts in bovine lenses by estimating total glutathione content and superoxide dismutase activity. Nanoparticles were thermostable and amorphous. Particle size of curcumin, resveratrol, and dibenzoylmethane nanoparticles were 331.0 ± 17.9 nm, 329.9 ± 1.9 nm, and 163.8 ± 3.2 nm, respectively. SEM confirmed porous morphology and XRD confirmed physical stability. Entrapment efficiency for curcumin-, resveratrol-, and dibenzoylmethane-loaded nanoparticles was calculated to be 84.4 ± 2.4%, 72.2 ± 1.5%, and 86.4 ± 0.6%, respectively. In vitro release studies showed an initial burst release followed by a continuous release of polyphenols from nanoparticles. Chemical assays confirmed the polyphenols’ antioxidant activity. Superoxide dismutase and glutathione levels were found to be significantly increased (p < 0.05) after treatment with polyphenol-loaded nanoparticles than pure polyphenols; thus, an improved antioxidant activity translational into potential anticataract activity of the polyphenols when loaded into nanoparticles was observed as compared to pure polyphenols.

Original languageEnglish (US)
Article number163
JournalAAPS PharmSciTech
Volume20
Issue number5
DOIs
StatePublished - Jul 1 2019

Fingerprint

cataract
Polyphenols
nanoparticles
Nanoparticles
Cataract
polyphenols
Antioxidants
antioxidants
Curcumin
curcumin
resveratrol
Aptitude
Therapeutics
antioxidant activity
Particle Size
Electron Scanning Microscopy
Superoxide Dismutase
Glutathione
particle size
glutathione

All Science Journal Classification (ASJC) codes

  • Agronomy and Crop Science
  • Pharmaceutical Science
  • Drug Discovery

Cite this

Preparation, Characterization and Antioxidant Evaluation of Poorly Soluble Polyphenol-Loaded Nanoparticles for Cataract Treatment. / Vora, Deepal; Heruye, Segewkal; Kumari, Dunesh; Opere, Catherine A.; Chauhan, Harsh.

In: AAPS PharmSciTech, Vol. 20, No. 5, 163, 01.07.2019.

Research output: Contribution to journalArticle

@article{4aad54f5fea348e69ec9dc25b376d441,
title = "Preparation, Characterization and Antioxidant Evaluation of Poorly Soluble Polyphenol-Loaded Nanoparticles for Cataract Treatment",
abstract = "Cataract, one of the leading causes of blindness worldwide, is a condition in which complete or partial opacity develops in the lens of the eyes, thereby impairing vision. This study aimed to examine the potential therapeutic and protective effects of poorly soluble polyphenols like curcumin, resveratrol, and dibenzoylmethane, known to possess significant antioxidant activity. The polyphenols were loaded into novel lipid-cyclodextrin-based nanoparticles and characterized by particle size, polydispersity index, differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, scanning electron microscopy (SEM), entrapment efficiency, and release studies. Ferric-reducing ability of plasma and 2,2-diphenyl-1-picrylhydrazyl chemical assays were used to evaluate their antioxidant properties based on their free radical quenching ability. Biochemical in vitro assays were used to examine these polyphenols on hydrogen peroxide-induced formation of cataracts in bovine lenses by estimating total glutathione content and superoxide dismutase activity. Nanoparticles were thermostable and amorphous. Particle size of curcumin, resveratrol, and dibenzoylmethane nanoparticles were 331.0 ± 17.9 nm, 329.9 ± 1.9 nm, and 163.8 ± 3.2 nm, respectively. SEM confirmed porous morphology and XRD confirmed physical stability. Entrapment efficiency for curcumin-, resveratrol-, and dibenzoylmethane-loaded nanoparticles was calculated to be 84.4 ± 2.4{\%}, 72.2 ± 1.5{\%}, and 86.4 ± 0.6{\%}, respectively. In vitro release studies showed an initial burst release followed by a continuous release of polyphenols from nanoparticles. Chemical assays confirmed the polyphenols’ antioxidant activity. Superoxide dismutase and glutathione levels were found to be significantly increased (p < 0.05) after treatment with polyphenol-loaded nanoparticles than pure polyphenols; thus, an improved antioxidant activity translational into potential anticataract activity of the polyphenols when loaded into nanoparticles was observed as compared to pure polyphenols.",
author = "Deepal Vora and Segewkal Heruye and Dunesh Kumari and Opere, {Catherine A.} and Harsh Chauhan",
year = "2019",
month = "7",
day = "1",
doi = "10.1208/s12249-019-1379-y",
language = "English (US)",
volume = "20",
journal = "AAPS PharmSciTech",
issn = "1530-9932",
publisher = "American Association of Pharmaceutical Scientists",
number = "5",

}

TY - JOUR

T1 - Preparation, Characterization and Antioxidant Evaluation of Poorly Soluble Polyphenol-Loaded Nanoparticles for Cataract Treatment

AU - Vora, Deepal

AU - Heruye, Segewkal

AU - Kumari, Dunesh

AU - Opere, Catherine A.

AU - Chauhan, Harsh

PY - 2019/7/1

Y1 - 2019/7/1

N2 - Cataract, one of the leading causes of blindness worldwide, is a condition in which complete or partial opacity develops in the lens of the eyes, thereby impairing vision. This study aimed to examine the potential therapeutic and protective effects of poorly soluble polyphenols like curcumin, resveratrol, and dibenzoylmethane, known to possess significant antioxidant activity. The polyphenols were loaded into novel lipid-cyclodextrin-based nanoparticles and characterized by particle size, polydispersity index, differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, scanning electron microscopy (SEM), entrapment efficiency, and release studies. Ferric-reducing ability of plasma and 2,2-diphenyl-1-picrylhydrazyl chemical assays were used to evaluate their antioxidant properties based on their free radical quenching ability. Biochemical in vitro assays were used to examine these polyphenols on hydrogen peroxide-induced formation of cataracts in bovine lenses by estimating total glutathione content and superoxide dismutase activity. Nanoparticles were thermostable and amorphous. Particle size of curcumin, resveratrol, and dibenzoylmethane nanoparticles were 331.0 ± 17.9 nm, 329.9 ± 1.9 nm, and 163.8 ± 3.2 nm, respectively. SEM confirmed porous morphology and XRD confirmed physical stability. Entrapment efficiency for curcumin-, resveratrol-, and dibenzoylmethane-loaded nanoparticles was calculated to be 84.4 ± 2.4%, 72.2 ± 1.5%, and 86.4 ± 0.6%, respectively. In vitro release studies showed an initial burst release followed by a continuous release of polyphenols from nanoparticles. Chemical assays confirmed the polyphenols’ antioxidant activity. Superoxide dismutase and glutathione levels were found to be significantly increased (p < 0.05) after treatment with polyphenol-loaded nanoparticles than pure polyphenols; thus, an improved antioxidant activity translational into potential anticataract activity of the polyphenols when loaded into nanoparticles was observed as compared to pure polyphenols.

AB - Cataract, one of the leading causes of blindness worldwide, is a condition in which complete or partial opacity develops in the lens of the eyes, thereby impairing vision. This study aimed to examine the potential therapeutic and protective effects of poorly soluble polyphenols like curcumin, resveratrol, and dibenzoylmethane, known to possess significant antioxidant activity. The polyphenols were loaded into novel lipid-cyclodextrin-based nanoparticles and characterized by particle size, polydispersity index, differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, scanning electron microscopy (SEM), entrapment efficiency, and release studies. Ferric-reducing ability of plasma and 2,2-diphenyl-1-picrylhydrazyl chemical assays were used to evaluate their antioxidant properties based on their free radical quenching ability. Biochemical in vitro assays were used to examine these polyphenols on hydrogen peroxide-induced formation of cataracts in bovine lenses by estimating total glutathione content and superoxide dismutase activity. Nanoparticles were thermostable and amorphous. Particle size of curcumin, resveratrol, and dibenzoylmethane nanoparticles were 331.0 ± 17.9 nm, 329.9 ± 1.9 nm, and 163.8 ± 3.2 nm, respectively. SEM confirmed porous morphology and XRD confirmed physical stability. Entrapment efficiency for curcumin-, resveratrol-, and dibenzoylmethane-loaded nanoparticles was calculated to be 84.4 ± 2.4%, 72.2 ± 1.5%, and 86.4 ± 0.6%, respectively. In vitro release studies showed an initial burst release followed by a continuous release of polyphenols from nanoparticles. Chemical assays confirmed the polyphenols’ antioxidant activity. Superoxide dismutase and glutathione levels were found to be significantly increased (p < 0.05) after treatment with polyphenol-loaded nanoparticles than pure polyphenols; thus, an improved antioxidant activity translational into potential anticataract activity of the polyphenols when loaded into nanoparticles was observed as compared to pure polyphenols.

UR - http://www.scopus.com/inward/record.url?scp=85064530133&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85064530133&partnerID=8YFLogxK

U2 - 10.1208/s12249-019-1379-y

DO - 10.1208/s12249-019-1379-y

M3 - Article

C2 - 30993475

AN - SCOPUS:85064530133

VL - 20

JO - AAPS PharmSciTech

JF - AAPS PharmSciTech

SN - 1530-9932

IS - 5

M1 - 163

ER -