Prestin-Based Outer Hair Cell Motility Is Necessary for Mammalian Cochlear Amplification

Peter Dallos, Xudong Wu, Mary Ann Cheatham, Jiangang Gao, Jing Zheng, Charles T. Anderson, Shuping Jia, Xiang Wang, Wendy H.Y. Cheng, Soma Sengupta, David Z.Z. He, Jian Zuo

Research output: Contribution to journalArticlepeer-review

230 Scopus citations

Abstract

It is a central tenet of cochlear neurobiology that mammalian ears rely on a local, mechanical amplification process for their high sensitivity and sharp frequency selectivity. While it is generally agreed that outer hair cells provide the amplification, two mechanisms have been proposed: stereociliary motility and somatic motility. The latter is driven by the motor protein prestin. Electrophysiological phenotyping of a prestin knockout mouse intimated that somatic motility is the amplifier. However, outer hair cells of knockout mice have significantly altered mechanical properties, making this mouse model unsatisfactory. Here, we study a mouse model without alteration to outer hair cell and organ of Corti mechanics or to mechanoelectric transduction, but with diminished prestin function. These animals have knockout-like behavior, demonstrating that prestin-based electromotility is required for cochlear amplification.

Original languageEnglish (US)
Pages (from-to)333-339
Number of pages7
JournalNeuron
Volume58
Issue number3
DOIs
StatePublished - May 8 2008

All Science Journal Classification (ASJC) codes

  • Neuroscience(all)

Fingerprint Dive into the research topics of 'Prestin-Based Outer Hair Cell Motility Is Necessary for Mammalian Cochlear Amplification'. Together they form a unique fingerprint.

Cite this