Production of light nuclei and anti-nuclei in pp and Pb-Pb collisions at energies available at the CERN Large Hadron Collider

ALICE Collaboration

Research output: Contribution to journalArticle

62 Citations (Scopus)

Abstract

The production of (anti-)deuteron and (anti-)He3 nuclei in Pb-Pb collisions at sNN=2.76 TeV has been studied using the ALICE detector at the LHC. The spectra exhibit a significant hardening with increasing centrality. Combined blast-wave fits of several particles support the interpretation that this behavior is caused by an increase of radial flow. The integrated particle yields are discussed in the context of coalescence and thermal-statistical model expectations. The particle ratios, He3/d and He3/p, in Pb-Pb collisions are found to be in agreement with a common chemical freeze-out temperature of Tchem≈156 MeV. These ratios do not vary with centrality which is in agreement with the thermal-statistical model. In a coalescence approach, it excludes models in which nucleus production is proportional to the particle multiplicity and favors those in which it is proportional to the particle density instead. In addition, the observation of 31 anti-tritons in Pb-Pb collisions is reported. For comparison, the deuteron spectrum in pp collisions at s=7 TeV is also presented. While the p/π ratio is similar in pp and Pb-Pb collisions, the d/p ratio in pp collisions is found to be lower by a factor of 2.2 than in Pb-Pb collisions.

Original languageEnglish
Article number024917
JournalPhysical Review C - Nuclear Physics
Volume93
Issue number2
DOIs
StatePublished - Feb 29 2016

Fingerprint

nuclei
collisions
energy
coalescing
deuterons
radial flow
blasts
hardening
detectors
temperature

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics

Cite this

Production of light nuclei and anti-nuclei in pp and Pb-Pb collisions at energies available at the CERN Large Hadron Collider. / ALICE Collaboration.

In: Physical Review C - Nuclear Physics, Vol. 93, No. 2, 024917, 29.02.2016.

Research output: Contribution to journalArticle

@article{b2c2b0a894424fa09da30b5a1b5f2122,
title = "Production of light nuclei and anti-nuclei in pp and Pb-Pb collisions at energies available at the CERN Large Hadron Collider",
abstract = "The production of (anti-)deuteron and (anti-)He3 nuclei in Pb-Pb collisions at sNN=2.76 TeV has been studied using the ALICE detector at the LHC. The spectra exhibit a significant hardening with increasing centrality. Combined blast-wave fits of several particles support the interpretation that this behavior is caused by an increase of radial flow. The integrated particle yields are discussed in the context of coalescence and thermal-statistical model expectations. The particle ratios, He3/d and He3/p, in Pb-Pb collisions are found to be in agreement with a common chemical freeze-out temperature of Tchem≈156 MeV. These ratios do not vary with centrality which is in agreement with the thermal-statistical model. In a coalescence approach, it excludes models in which nucleus production is proportional to the particle multiplicity and favors those in which it is proportional to the particle density instead. In addition, the observation of 31 anti-tritons in Pb-Pb collisions is reported. For comparison, the deuteron spectrum in pp collisions at s=7 TeV is also presented. While the p/π ratio is similar in pp and Pb-Pb collisions, the d/p ratio in pp collisions is found to be lower by a factor of 2.2 than in Pb-Pb collisions.",
author = "{ALICE Collaboration} and J. Adam and D. Adamov{\'a} and Aggarwal, {M. M.} and {Aglieri Rinella}, G. and M. Agnello and N. Agrawal and Z. Ahammed and I. Ahmed and Ahn, {S. U.} and I. Aimo and S. Aiola and M. Ajaz and A. Akindinov and Alam, {S. N.} and D. Aleksandrov and B. Alessandro and D. Alexandre and {Alfaro Molina}, R. and A. Alici and A. Alkin and J. Alme and T. Alt and S. Altinpinar and I. Altsybeev and {Alves Garcia Prado}, C. and C. Andrei and A. Andronic and V. Anguelov and J. Anielski and T. Antičić and F. Antinori and P. Antonioli and L. Aphecetche and H. Appelsh{\"a}user and S. Arcelli and N. Armesto and R. Arnaldi and T. Aronsson and Arsene, {I. C.} and M. Arslandok and A. Augustinus and R. Averbeck and Azmi, {M. D.} and M. Bach and A. Badal{\`a} and Baek, {Y. W.} and S. Bagnasco and R. Bailhache and Cherney, {Michael G.} and Seger, {Janet E.}",
year = "2016",
month = "2",
day = "29",
doi = "10.1103/PhysRevC.93.024917",
language = "English",
volume = "93",
journal = "Physical Review C - Nuclear Physics",
issn = "0556-2813",
publisher = "American Physical Society",
number = "2",

}

TY - JOUR

T1 - Production of light nuclei and anti-nuclei in pp and Pb-Pb collisions at energies available at the CERN Large Hadron Collider

AU - ALICE Collaboration

AU - Adam, J.

AU - Adamová, D.

AU - Aggarwal, M. M.

AU - Aglieri Rinella, G.

AU - Agnello, M.

AU - Agrawal, N.

AU - Ahammed, Z.

AU - Ahmed, I.

AU - Ahn, S. U.

AU - Aimo, I.

AU - Aiola, S.

AU - Ajaz, M.

AU - Akindinov, A.

AU - Alam, S. N.

AU - Aleksandrov, D.

AU - Alessandro, B.

AU - Alexandre, D.

AU - Alfaro Molina, R.

AU - Alici, A.

AU - Alkin, A.

AU - Alme, J.

AU - Alt, T.

AU - Altinpinar, S.

AU - Altsybeev, I.

AU - Alves Garcia Prado, C.

AU - Andrei, C.

AU - Andronic, A.

AU - Anguelov, V.

AU - Anielski, J.

AU - Antičić, T.

AU - Antinori, F.

AU - Antonioli, P.

AU - Aphecetche, L.

AU - Appelshäuser, H.

AU - Arcelli, S.

AU - Armesto, N.

AU - Arnaldi, R.

AU - Aronsson, T.

AU - Arsene, I. C.

AU - Arslandok, M.

AU - Augustinus, A.

AU - Averbeck, R.

AU - Azmi, M. D.

AU - Bach, M.

AU - Badalà, A.

AU - Baek, Y. W.

AU - Bagnasco, S.

AU - Bailhache, R.

AU - Cherney, Michael G.

AU - Seger, Janet E.

PY - 2016/2/29

Y1 - 2016/2/29

N2 - The production of (anti-)deuteron and (anti-)He3 nuclei in Pb-Pb collisions at sNN=2.76 TeV has been studied using the ALICE detector at the LHC. The spectra exhibit a significant hardening with increasing centrality. Combined blast-wave fits of several particles support the interpretation that this behavior is caused by an increase of radial flow. The integrated particle yields are discussed in the context of coalescence and thermal-statistical model expectations. The particle ratios, He3/d and He3/p, in Pb-Pb collisions are found to be in agreement with a common chemical freeze-out temperature of Tchem≈156 MeV. These ratios do not vary with centrality which is in agreement with the thermal-statistical model. In a coalescence approach, it excludes models in which nucleus production is proportional to the particle multiplicity and favors those in which it is proportional to the particle density instead. In addition, the observation of 31 anti-tritons in Pb-Pb collisions is reported. For comparison, the deuteron spectrum in pp collisions at s=7 TeV is also presented. While the p/π ratio is similar in pp and Pb-Pb collisions, the d/p ratio in pp collisions is found to be lower by a factor of 2.2 than in Pb-Pb collisions.

AB - The production of (anti-)deuteron and (anti-)He3 nuclei in Pb-Pb collisions at sNN=2.76 TeV has been studied using the ALICE detector at the LHC. The spectra exhibit a significant hardening with increasing centrality. Combined blast-wave fits of several particles support the interpretation that this behavior is caused by an increase of radial flow. The integrated particle yields are discussed in the context of coalescence and thermal-statistical model expectations. The particle ratios, He3/d and He3/p, in Pb-Pb collisions are found to be in agreement with a common chemical freeze-out temperature of Tchem≈156 MeV. These ratios do not vary with centrality which is in agreement with the thermal-statistical model. In a coalescence approach, it excludes models in which nucleus production is proportional to the particle multiplicity and favors those in which it is proportional to the particle density instead. In addition, the observation of 31 anti-tritons in Pb-Pb collisions is reported. For comparison, the deuteron spectrum in pp collisions at s=7 TeV is also presented. While the p/π ratio is similar in pp and Pb-Pb collisions, the d/p ratio in pp collisions is found to be lower by a factor of 2.2 than in Pb-Pb collisions.

UR - http://www.scopus.com/inward/record.url?scp=84960099590&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84960099590&partnerID=8YFLogxK

U2 - 10.1103/PhysRevC.93.024917

DO - 10.1103/PhysRevC.93.024917

M3 - Article

VL - 93

JO - Physical Review C - Nuclear Physics

JF - Physical Review C - Nuclear Physics

SN - 0556-2813

IS - 2

M1 - 024917

ER -