TY - JOUR
T1 - Quantum walk search on the complete bipartite graph
AU - Rhodes, Mason L.
AU - Wong, Thomas G.
N1 - Funding Information:
This work was partially supported by T.W.'s startup funds from Creighton University.
Publisher Copyright:
© 2019 American Physical Society.
PY - 2019/3/1
Y1 - 2019/3/1
N2 - The coined quantum walk is a discretization of the Dirac equation of relativistic quantum mechanics, and it is the basis of many quantum algorithms. We investigate how it searches the complete bipartite graph of N vertices for one of k marked vertices with different initial states. We prove an intriguing dependence on the number of marked and unmarked vertices in each partite set. For example, when the graph is irregular and the initial state is the typical uniform superposition over the vertices, then the success probability can vary greatly from one time step to the next, even alternating between 0 and 1, so the precise time at which measurement occurs is crucial. When the initial state is a uniform superposition over the edges, however, the success probability evolves smoothly. As another example, if the complete bipartite graph is regular, then the two initial states are equivalent. Then if two marked vertices are in the same partite set, the success probability reaches 1/2, but if they are in different partite sets, it instead reaches 1. This differs from the complete graph, which is the quantum walk formulation of Grover's algorithm, where the success probability with two marked vertices is 8/9. This reveals a contrast to the continuous-time quantum walk, whose evolution is governed by Schrödinger's equation, which asymptotically searches the regular complete bipartite graph with any arrangement of marked vertices in the same manner as the complete graph.
AB - The coined quantum walk is a discretization of the Dirac equation of relativistic quantum mechanics, and it is the basis of many quantum algorithms. We investigate how it searches the complete bipartite graph of N vertices for one of k marked vertices with different initial states. We prove an intriguing dependence on the number of marked and unmarked vertices in each partite set. For example, when the graph is irregular and the initial state is the typical uniform superposition over the vertices, then the success probability can vary greatly from one time step to the next, even alternating between 0 and 1, so the precise time at which measurement occurs is crucial. When the initial state is a uniform superposition over the edges, however, the success probability evolves smoothly. As another example, if the complete bipartite graph is regular, then the two initial states are equivalent. Then if two marked vertices are in the same partite set, the success probability reaches 1/2, but if they are in different partite sets, it instead reaches 1. This differs from the complete graph, which is the quantum walk formulation of Grover's algorithm, where the success probability with two marked vertices is 8/9. This reveals a contrast to the continuous-time quantum walk, whose evolution is governed by Schrödinger's equation, which asymptotically searches the regular complete bipartite graph with any arrangement of marked vertices in the same manner as the complete graph.
UR - http://www.scopus.com/inward/record.url?scp=85062823481&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85062823481&partnerID=8YFLogxK
U2 - 10.1103/PhysRevA.99.032301
DO - 10.1103/PhysRevA.99.032301
M3 - Article
AN - SCOPUS:85062823481
VL - 99
JO - Physical Review A - Atomic, Molecular, and Optical Physics
JF - Physical Review A - Atomic, Molecular, and Optical Physics
SN - 1050-2947
IS - 3
M1 - 032301
ER -