RESIN BOND STRENGTH TO SILICOATED METAL

James G. Evans, Robert L.Coo Ley, Wayne W. Barkmeier

Research output: Contribution to journalArticle

Abstract

The effect of air abrasion particle size on the shear bond strengths of a silicoated metal surface was evaluated. Eighty square metal specimens were prepared by casting Rexillium III into 1 cm × 1 cm × 1 mm units. One side of the metal specimens was ground flat to a 600 grit. Forty of the specimens were air abraded with 50‐micron and 40 with 250‐micron aluminum oxide. All specimens were then silicoated. Microfil Pontic was applied to the silicoated surface in a cylindrically shaped matrix (3.66 mm in diameter). All specimens were stored in distilled water at 37°C for 24 hours. One group was tested at 24 hours (20 of the 50‐micron and 20 of the 250‐micron), while the second group (20 of the 50‐micron and 20 of the 250‐micron) was thermocycled (2,500 cycles at 6°C‐60°C). The specimens were stressed to fracture in an Instron testing machine with a crosshead speed of 5 mm/min. At 24 hours, the 250‐micron air abraded surface had a higher mean bond strength (21.79 MPa ± 5.02) than the 50‐micron group (18.92 MPa ± 4.48). After thermocycling, the mean bond strengths were practically identical: the 250‐micron group was 17.04 ± 4.49 and the 50‐micron group was 17.05 MPa±4.43. When this data was subjected to a t‐test, no statistical difference (p ± 0.05) was found between the 50‐micron and 250‐micron air abraded groups either at 24 hours or after thermocycling. However, there was a significant decrease (p < 0.05) in bond strength of the 250‐micron group after thermocycling when compared to the 24‐hour group.

Original languageEnglish (US)
Pages (from-to)30-33
Number of pages4
JournalJournal of Esthetic and Restorative Dentistry
Volume4
Issue number1
DOIs
StatePublished - 1992

Fingerprint

Metals
Air
Fixed Partial Denture
Shear Strength
Silicone Elastomers
Aluminum Oxide
Particle Size
Water

All Science Journal Classification (ASJC) codes

  • Dentistry(all)

Cite this

RESIN BOND STRENGTH TO SILICOATED METAL. / Evans, James G.; Ley, Robert L.Coo; Barkmeier, Wayne W.

In: Journal of Esthetic and Restorative Dentistry, Vol. 4, No. 1, 1992, p. 30-33.

Research output: Contribution to journalArticle

Evans, James G. ; Ley, Robert L.Coo ; Barkmeier, Wayne W. / RESIN BOND STRENGTH TO SILICOATED METAL. In: Journal of Esthetic and Restorative Dentistry. 1992 ; Vol. 4, No. 1. pp. 30-33.
@article{9e8fe1b1379e475e82b0fac3b2a68b5e,
title = "RESIN BOND STRENGTH TO SILICOATED METAL",
abstract = "The effect of air abrasion particle size on the shear bond strengths of a silicoated metal surface was evaluated. Eighty square metal specimens were prepared by casting Rexillium III into 1 cm × 1 cm × 1 mm units. One side of the metal specimens was ground flat to a 600 grit. Forty of the specimens were air abraded with 50‐micron and 40 with 250‐micron aluminum oxide. All specimens were then silicoated. Microfil Pontic was applied to the silicoated surface in a cylindrically shaped matrix (3.66 mm in diameter). All specimens were stored in distilled water at 37°C for 24 hours. One group was tested at 24 hours (20 of the 50‐micron and 20 of the 250‐micron), while the second group (20 of the 50‐micron and 20 of the 250‐micron) was thermocycled (2,500 cycles at 6°C‐60°C). The specimens were stressed to fracture in an Instron testing machine with a crosshead speed of 5 mm/min. At 24 hours, the 250‐micron air abraded surface had a higher mean bond strength (21.79 MPa ± 5.02) than the 50‐micron group (18.92 MPa ± 4.48). After thermocycling, the mean bond strengths were practically identical: the 250‐micron group was 17.04 ± 4.49 and the 50‐micron group was 17.05 MPa±4.43. When this data was subjected to a t‐test, no statistical difference (p ± 0.05) was found between the 50‐micron and 250‐micron air abraded groups either at 24 hours or after thermocycling. However, there was a significant decrease (p < 0.05) in bond strength of the 250‐micron group after thermocycling when compared to the 24‐hour group.",
author = "Evans, {James G.} and Ley, {Robert L.Coo} and Barkmeier, {Wayne W.}",
year = "1992",
doi = "10.1111/j.1708-8240.1992.tb00651.x",
language = "English (US)",
volume = "4",
pages = "30--33",
journal = "Journal of Esthetic and Restorative Dentistry",
issn = "1496-4155",
publisher = "Wiley-Blackwell",
number = "1",

}

TY - JOUR

T1 - RESIN BOND STRENGTH TO SILICOATED METAL

AU - Evans, James G.

AU - Ley, Robert L.Coo

AU - Barkmeier, Wayne W.

PY - 1992

Y1 - 1992

N2 - The effect of air abrasion particle size on the shear bond strengths of a silicoated metal surface was evaluated. Eighty square metal specimens were prepared by casting Rexillium III into 1 cm × 1 cm × 1 mm units. One side of the metal specimens was ground flat to a 600 grit. Forty of the specimens were air abraded with 50‐micron and 40 with 250‐micron aluminum oxide. All specimens were then silicoated. Microfil Pontic was applied to the silicoated surface in a cylindrically shaped matrix (3.66 mm in diameter). All specimens were stored in distilled water at 37°C for 24 hours. One group was tested at 24 hours (20 of the 50‐micron and 20 of the 250‐micron), while the second group (20 of the 50‐micron and 20 of the 250‐micron) was thermocycled (2,500 cycles at 6°C‐60°C). The specimens were stressed to fracture in an Instron testing machine with a crosshead speed of 5 mm/min. At 24 hours, the 250‐micron air abraded surface had a higher mean bond strength (21.79 MPa ± 5.02) than the 50‐micron group (18.92 MPa ± 4.48). After thermocycling, the mean bond strengths were practically identical: the 250‐micron group was 17.04 ± 4.49 and the 50‐micron group was 17.05 MPa±4.43. When this data was subjected to a t‐test, no statistical difference (p ± 0.05) was found between the 50‐micron and 250‐micron air abraded groups either at 24 hours or after thermocycling. However, there was a significant decrease (p < 0.05) in bond strength of the 250‐micron group after thermocycling when compared to the 24‐hour group.

AB - The effect of air abrasion particle size on the shear bond strengths of a silicoated metal surface was evaluated. Eighty square metal specimens were prepared by casting Rexillium III into 1 cm × 1 cm × 1 mm units. One side of the metal specimens was ground flat to a 600 grit. Forty of the specimens were air abraded with 50‐micron and 40 with 250‐micron aluminum oxide. All specimens were then silicoated. Microfil Pontic was applied to the silicoated surface in a cylindrically shaped matrix (3.66 mm in diameter). All specimens were stored in distilled water at 37°C for 24 hours. One group was tested at 24 hours (20 of the 50‐micron and 20 of the 250‐micron), while the second group (20 of the 50‐micron and 20 of the 250‐micron) was thermocycled (2,500 cycles at 6°C‐60°C). The specimens were stressed to fracture in an Instron testing machine with a crosshead speed of 5 mm/min. At 24 hours, the 250‐micron air abraded surface had a higher mean bond strength (21.79 MPa ± 5.02) than the 50‐micron group (18.92 MPa ± 4.48). After thermocycling, the mean bond strengths were practically identical: the 250‐micron group was 17.04 ± 4.49 and the 50‐micron group was 17.05 MPa±4.43. When this data was subjected to a t‐test, no statistical difference (p ± 0.05) was found between the 50‐micron and 250‐micron air abraded groups either at 24 hours or after thermocycling. However, there was a significant decrease (p < 0.05) in bond strength of the 250‐micron group after thermocycling when compared to the 24‐hour group.

UR - http://www.scopus.com/inward/record.url?scp=85024958692&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85024958692&partnerID=8YFLogxK

U2 - 10.1111/j.1708-8240.1992.tb00651.x

DO - 10.1111/j.1708-8240.1992.tb00651.x

M3 - Article

VL - 4

SP - 30

EP - 33

JO - Journal of Esthetic and Restorative Dentistry

JF - Journal of Esthetic and Restorative Dentistry

SN - 1496-4155

IS - 1

ER -