Se-mediated domain-domain communication in band 3 of human erythrocytes

F. Y. Yang, C. Fen, Y. P. Tu

Research output: Contribution to journalArticle

3 Scopus citations


Na 2SeO 3 could affect the anion flux of Band 3 of inside-out erythrocyte membrane vesicles (IOVs). Such effect was believed to be based on the interaction of SH groups of Band 3 with Na 2SeO 3. This effect could be eliminated when the cytoplasmic domain of Band 3 was proteolytically removed by trypsin. This suggested that SH groups in the cytoplasmic domain were involved in such interaction. Measurement of the pH dependence of intrinsic fluorescence intensity provided evidence that conformational changes of Band 3 occurred as a consequence of interaction with selenite. KI quenching of intrinsic fluorescence of Band 3 could also show that there was a conformational change in the cytoplasmic domain of Band 3 after reaction with Na 2SeO 3. Such conformational change in turn could be transmitted to the membrane domain of Band 3 monitored by quenching of intrinsic fluorescence of Band 3 using hypocrellin B (HB) (a photosensitive pigment obtained from a parasitic fungus growing in Yunnan, China). It is suggested that the cytoplasmic domain of Band 3 is not necessary for its anion flux, but is essential for the regulation (e.g., by Se) of its active site located at the membrane domain, and hence, it may provide evidence of communication between the cytoplasmic domain and the membrane domain of Band 3.

Original languageEnglish (US)
Pages (from-to)279-295
Number of pages17
JournalBiological Trace Element Research
Issue number3
StatePublished - Jan 1 1996
Externally publishedYes


All Science Journal Classification (ASJC) codes

  • Endocrinology, Diabetes and Metabolism
  • Biochemistry
  • Clinical Biochemistry
  • Biochemistry, medical
  • Inorganic Chemistry

Cite this