TY - JOUR
T1 - Selective expression of β tubulin isotypes in gerbil vestibular sensory epithelia and neurons
AU - Perry, Briant
AU - Jensen-Smith, Heather C.
AU - Ludueña, Richard F.
AU - Hallworth, Richard
PY - 2003/9
Y1 - 2003/9
N2 - The seven mammalian isotypes of β tubulin are strikingly similar in amino acid sequence. The differences in isotypic sequence, although small, are nonetheless conserved in evolution, which suggests that they may confer distinct functional roles. If so, such roles should be reflected in the selective expression of isotypes by cell type, or even in the sorting of isotypes to within-cell pools. Hair cells of the vestibular sensory epithelia each possess a kinocilium, a microtubule-based organelle that could represent a distinct microtubule compartment, separate from the extensive microtubule network in the soma. The afferent neurons that innervate the vestibular sensory epithelia may also be functionally divided into dendritic, somatic, and axonal compartments, each with its own complement of microtubules. We have examined the distribution of β tubulin isotypes in gerbil vestibular epithelia using isotype-specific antibodies to four isotypes and indirect immunofluorescence. We found that hair cells selectively express β I and βIV tubulin, while supporting cells express βI, βII, and βIV tubulin. However, no sorting of isotypes between somatic and kinocilia compartments was found in hair cells. Vestibular ganglion cells display three isotypes in the soma, axon, and terminal dendrite compartments (βI, β II, and βIII tubulin), but only βIII tubulin was found in calyceal nerve endings. The implication of these findings is that β tubulin isotypes are not sorted to within-cell compartments in hair cells but are sorted in some vestibular neurons.
AB - The seven mammalian isotypes of β tubulin are strikingly similar in amino acid sequence. The differences in isotypic sequence, although small, are nonetheless conserved in evolution, which suggests that they may confer distinct functional roles. If so, such roles should be reflected in the selective expression of isotypes by cell type, or even in the sorting of isotypes to within-cell pools. Hair cells of the vestibular sensory epithelia each possess a kinocilium, a microtubule-based organelle that could represent a distinct microtubule compartment, separate from the extensive microtubule network in the soma. The afferent neurons that innervate the vestibular sensory epithelia may also be functionally divided into dendritic, somatic, and axonal compartments, each with its own complement of microtubules. We have examined the distribution of β tubulin isotypes in gerbil vestibular epithelia using isotype-specific antibodies to four isotypes and indirect immunofluorescence. We found that hair cells selectively express β I and βIV tubulin, while supporting cells express βI, βII, and βIV tubulin. However, no sorting of isotypes between somatic and kinocilia compartments was found in hair cells. Vestibular ganglion cells display three isotypes in the soma, axon, and terminal dendrite compartments (βI, β II, and βIII tubulin), but only βIII tubulin was found in calyceal nerve endings. The implication of these findings is that β tubulin isotypes are not sorted to within-cell compartments in hair cells but are sorted in some vestibular neurons.
UR - http://www.scopus.com/inward/record.url?scp=0141840843&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0141840843&partnerID=8YFLogxK
U2 - 10.1007/s10162-002-2048-4
DO - 10.1007/s10162-002-2048-4
M3 - Article
C2 - 14690051
AN - SCOPUS:0141840843
VL - 4
SP - 329
EP - 338
JO - JARO - Journal of the Association for Research in Otolaryngology
JF - JARO - Journal of the Association for Research in Otolaryngology
SN - 1525-3961
IS - 3
ER -