Abstract
Palmyrolide A is a neuroprotective macrolide isolated by Gerwick and coworkers in 2010. This natural product is known to suppress neuronal spontaneous calcium ion oscillations through its voltage-gated sodium channel blocking ability which is of significant interest in CNS drug discovery. Herein, we give a detailed account on total synthesis of (+)-palmyrolide A and synthesis of a focused library of macrocycles around the scaffold, followed by their biological evaluation. Use of the chiral pool approach, Zhu's oxidative homologation, access to unnatural cis-palmyrolide A, preparation of 18 new analogues and identification of macrolides with improved sodium channel blocking activity are the important features of the present paper. As a measure of potency as voltage-gated sodium channel blockers, all the synthesized analogues were profiled for their ability to inhibit the veratridine-stimulated Na+ influx in murine primary neuronal cultures. Four macrocycles were found to be more potent or comparable to that of the natural product (-)-palmyrolide A. The most potent compound from this series 20 was structurally simplified and readily accessible in good quantities for further biological profiling.
Original language | English (US) |
---|---|
Pages (from-to) | 8457-8473 |
Number of pages | 17 |
Journal | Organic and Biomolecular Chemistry |
Volume | 14 |
Issue number | 36 |
DOIs | |
State | Published - 2016 |
All Science Journal Classification (ASJC) codes
- Biochemistry
- Physical and Theoretical Chemistry
- Organic Chemistry