The central starburst and ionization mechanism in the liner/H II region transition nucleus in NGC 4569

Jack Gabel, F. C. Bruhweiler

Research output: Contribution to journalArticle

13 Scopus citations

Abstract

We present a comprehensive study to determine whether the LINER/H II region transition spectrum in NGC 4569 can be generated solely by photoionization by the nuclear starburst. A review of the multiwave-length data from the literature reveals no additional sources that contribute to the ionization. We find that the young starburst dominating the UV emission is distinct from the nuclear population of A supergiants identified in the optical spectrum by W. Keel. Spectral synthesis analysis provides constraints on the physical nature of the starburst, revealing a 5-6 Myr, approximately instantaneous starburst with subsolar metallicity. These results are used to model the spectral energy distribution of the ionizing continuum. Luminosity constraints place limits on the steepness of the extinction curve for the young starburst. The Savage & Mathis curve satisfies all luminosity constraints and the derived reddening is similar to the emission-line reddening. These results imply extreme conditions in the nuclear starburst, with ∼5 × 104 O and B stars compacted in the inner 9″ × 13″ region of the nucleus. Using photoionization analysis and employing all observational constraints on the emission-line gas, we find very specific conditions are required if the spectrum is generated solely by stellar photoionization. At least two spatially distinct components are required: a compact region with strong O III emission and an extended, low-density component emitting most of the S II flux. A high-density component is also needed to generate the O I flux. Additionally, a limited contribution from Wolf-Rayet stars to the ionizing SED is necessary, consistent with the results of a study by A. Barth and J. Shields. We present a physical interpretation for the multicomponent emission-line gas.

Original languageEnglish
Pages (from-to)737-750
Number of pages14
JournalAstronomical Journal
Volume124
Issue number2 1760
DOIs
Publication statusPublished - Aug 2002
Externally publishedYes

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Space and Planetary Science
  • Astronomy and Astrophysics

Cite this