TY - JOUR
T1 - The Corticotropin-Releasing Factor (CRF)-system and monoaminergic afferents in the central amygdala
T2 - Investigations in different mouse strains and comparison with the rat
AU - Asan, E.
AU - Yilmazer-Hanke, D. M.
AU - Eliava, M.
AU - Hantsch, M.
AU - Lesch, K. P.
AU - Schmitt, A.
N1 - Funding Information:
The authors are indebted to Rita Herrmann, Gabriela Ortega and Sybille Röhl for expert technical assistance. We also thank Herbert Schwegler for the gift of different mouse strains. The study was supported by the Deutsche Forschungsgemeinschaft (DFG grant AS89/2-1, SFB 581, TP Z3, B9).
PY - 2005
Y1 - 2005
N2 - Corticotropin-releasing-factor (CRF) containing systems and monoaminergic afferents of the central amygdaloid nucleus (Ce) are crucial players in central nervous stress responses. For functional analyses of specific roles of these systems, numerous mouse models have been generated which lack or overexpress individual signal transduction components. Since data concerning system morphologies in murine brain are rarely available, mouse studies are usually designed and interpreted based on previous findings in rats, although interspecies differences are frequent. In the present study, in situ hybridization for CRF mRNA and correlative immunocytochemistry for CRF and monoaminergic afferents revealed numerous CRF mRNA-reactive neurons in the lateral Ce subnucleus (CeL) codistributed with dense dopaminergic fiber plexus in mice as has been demonstrated in rats. However, while in rats the lateral capsular Ce (CeLc) displays only scarce CRF immunoreactive (CRF-ir) innervation, particularly dense CRF-ir fiber plexus were observed in the CeLc in mice, with differences in labeling densities between different strains. CRF-ir terminal fibers overlap with the moderate serotonergic innervation of this subnucleus in mice. Additionally, CRF mRNA-reactive neurons were found immediately dorsal to the amygdala in the region of the interstitial nucleus of the posterior limb of the anterior commissure/amygdalostriatal transition area in both species. In mice, this region displayed dense CRF-ir fiber plexus, with variations between the strains. The results indicate that in mice and rats dopaminergic afferents represent the primary monoaminergic input to the CRF neurons in the CeL. In mice only, CRF-ir afferents provide dense innervation of CeLc neurons. Since the CeLc lacks dopaminergic input in both species but possesses moderate serotonergic afferents, CRF/serotonin interactions may occur selectively in mouse CeLc. The observed interspecies and interstrain differences in CRF input and CRF/monoaminergic interactions may influence the interpretation of findings concerning Ce functions in stress and fear in mouse models.
AB - Corticotropin-releasing-factor (CRF) containing systems and monoaminergic afferents of the central amygdaloid nucleus (Ce) are crucial players in central nervous stress responses. For functional analyses of specific roles of these systems, numerous mouse models have been generated which lack or overexpress individual signal transduction components. Since data concerning system morphologies in murine brain are rarely available, mouse studies are usually designed and interpreted based on previous findings in rats, although interspecies differences are frequent. In the present study, in situ hybridization for CRF mRNA and correlative immunocytochemistry for CRF and monoaminergic afferents revealed numerous CRF mRNA-reactive neurons in the lateral Ce subnucleus (CeL) codistributed with dense dopaminergic fiber plexus in mice as has been demonstrated in rats. However, while in rats the lateral capsular Ce (CeLc) displays only scarce CRF immunoreactive (CRF-ir) innervation, particularly dense CRF-ir fiber plexus were observed in the CeLc in mice, with differences in labeling densities between different strains. CRF-ir terminal fibers overlap with the moderate serotonergic innervation of this subnucleus in mice. Additionally, CRF mRNA-reactive neurons were found immediately dorsal to the amygdala in the region of the interstitial nucleus of the posterior limb of the anterior commissure/amygdalostriatal transition area in both species. In mice, this region displayed dense CRF-ir fiber plexus, with variations between the strains. The results indicate that in mice and rats dopaminergic afferents represent the primary monoaminergic input to the CRF neurons in the CeL. In mice only, CRF-ir afferents provide dense innervation of CeLc neurons. Since the CeLc lacks dopaminergic input in both species but possesses moderate serotonergic afferents, CRF/serotonin interactions may occur selectively in mouse CeLc. The observed interspecies and interstrain differences in CRF input and CRF/monoaminergic interactions may influence the interpretation of findings concerning Ce functions in stress and fear in mouse models.
UR - http://www.scopus.com/inward/record.url?scp=14644417860&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=14644417860&partnerID=8YFLogxK
U2 - 10.1016/j.neuroscience.2004.11.040
DO - 10.1016/j.neuroscience.2004.11.040
M3 - Article
C2 - 15749348
AN - SCOPUS:14644417860
VL - 131
SP - 953
EP - 967
JO - Neuroscience
JF - Neuroscience
SN - 0306-4522
IS - 4
ER -