The location and mechanism of electromotility in guinea pig outer hair cells

Richard J. Hallworth, B. N. Evans, P. Dallos

Research output: Contribution to journalArticle

46 Citations (Scopus)

Abstract

1. The microchamber method was used to examine the motile responses of isolated guinea pig outer hair cells to electrical stimulation. In the microchamber method, an isolated cell is drawn partway into a suction pipette and stimulated transcellularly. The relative position of the cell in the microchamber is referred to as the exclusion fraction. 2. The length changes of the included and excluded segments were compared for constant sinusoidal stimulus amplitude as functions of the exclusion fraction. Both included and excluded segments showed maximal responses when the cell was excluded approximately halfway. Both segments showed smaller or absent responses when the cell was almost fully excluded or almost fully included. 3. When the cell was near to, but not at, the maximum exclusion, the included segment response amplitude was zero, whereas the excluded segment response amplitude was nonzero. In contrast, when the cell was nearly fully included, the excluded segment response amplitude was zero, but the included segment response amplitude was still detectable. A simple model of outer hair cell motility based on these results suggests that the cell has finite-resistance terminations and that the motors are restricted to a region above the nucleus and below its ciliated apex (cuticular plate). 4. The function describing length change as a function of command voltage was measured for each segment as the exclusion fraction was varied. The functions were similar at midrange exclusions (i.e., when the segments were about equal length), showing nonlinearity and saturability. The functions were strikingly different when the segment lengths were different. The effects of exclusion on the voltage to length-change functions suggested that the nonlinearity and saturability are local properties of the motility mechanism. 5. The diameter changes of both segments were examined. The segment diameter changes were always antiphasic to the length changes. This finding implies that the motility mechanism has an active antiphasic diameter component. The diameter change amplitude was a monotonically increasing function of exclusion for the included segment, and a decreasing function for the excluded segment. 6. The voltage to length-change and voltage to diameter-change functions were measured for the same cell and exclusion fraction. The voltage to diameter- change function was smaller in amplitude than the voltage to length-change function. The functions were of opposite polarity to each other, but were otherwise similar in character. Thus it is likely that the same motor mechanism is responsible for both axial and diameter deformations.

Original languageEnglish
Pages (from-to)549-558
Number of pages10
JournalJournal of Neurophysiology
Volume70
Issue number2
StatePublished - 1993
Externally publishedYes

Fingerprint

Outer Auditory Hair Cells
Guinea Pigs
Suction
Electric Stimulation
Cell Movement

All Science Journal Classification (ASJC) codes

  • Physiology
  • Neuroscience(all)

Cite this

Hallworth, R. J., Evans, B. N., & Dallos, P. (1993). The location and mechanism of electromotility in guinea pig outer hair cells. Journal of Neurophysiology, 70(2), 549-558.

The location and mechanism of electromotility in guinea pig outer hair cells. / Hallworth, Richard J.; Evans, B. N.; Dallos, P.

In: Journal of Neurophysiology, Vol. 70, No. 2, 1993, p. 549-558.

Research output: Contribution to journalArticle

Hallworth, RJ, Evans, BN & Dallos, P 1993, 'The location and mechanism of electromotility in guinea pig outer hair cells', Journal of Neurophysiology, vol. 70, no. 2, pp. 549-558.
Hallworth, Richard J. ; Evans, B. N. ; Dallos, P. / The location and mechanism of electromotility in guinea pig outer hair cells. In: Journal of Neurophysiology. 1993 ; Vol. 70, No. 2. pp. 549-558.
@article{42ac3ec1f8664926809dd58c58067e4d,
title = "The location and mechanism of electromotility in guinea pig outer hair cells",
abstract = "1. The microchamber method was used to examine the motile responses of isolated guinea pig outer hair cells to electrical stimulation. In the microchamber method, an isolated cell is drawn partway into a suction pipette and stimulated transcellularly. The relative position of the cell in the microchamber is referred to as the exclusion fraction. 2. The length changes of the included and excluded segments were compared for constant sinusoidal stimulus amplitude as functions of the exclusion fraction. Both included and excluded segments showed maximal responses when the cell was excluded approximately halfway. Both segments showed smaller or absent responses when the cell was almost fully excluded or almost fully included. 3. When the cell was near to, but not at, the maximum exclusion, the included segment response amplitude was zero, whereas the excluded segment response amplitude was nonzero. In contrast, when the cell was nearly fully included, the excluded segment response amplitude was zero, but the included segment response amplitude was still detectable. A simple model of outer hair cell motility based on these results suggests that the cell has finite-resistance terminations and that the motors are restricted to a region above the nucleus and below its ciliated apex (cuticular plate). 4. The function describing length change as a function of command voltage was measured for each segment as the exclusion fraction was varied. The functions were similar at midrange exclusions (i.e., when the segments were about equal length), showing nonlinearity and saturability. The functions were strikingly different when the segment lengths were different. The effects of exclusion on the voltage to length-change functions suggested that the nonlinearity and saturability are local properties of the motility mechanism. 5. The diameter changes of both segments were examined. The segment diameter changes were always antiphasic to the length changes. This finding implies that the motility mechanism has an active antiphasic diameter component. The diameter change amplitude was a monotonically increasing function of exclusion for the included segment, and a decreasing function for the excluded segment. 6. The voltage to length-change and voltage to diameter-change functions were measured for the same cell and exclusion fraction. The voltage to diameter- change function was smaller in amplitude than the voltage to length-change function. The functions were of opposite polarity to each other, but were otherwise similar in character. Thus it is likely that the same motor mechanism is responsible for both axial and diameter deformations.",
author = "Hallworth, {Richard J.} and Evans, {B. N.} and P. Dallos",
year = "1993",
language = "English",
volume = "70",
pages = "549--558",
journal = "Journal of Neurophysiology",
issn = "0022-3077",
publisher = "American Physiological Society",
number = "2",

}

TY - JOUR

T1 - The location and mechanism of electromotility in guinea pig outer hair cells

AU - Hallworth, Richard J.

AU - Evans, B. N.

AU - Dallos, P.

PY - 1993

Y1 - 1993

N2 - 1. The microchamber method was used to examine the motile responses of isolated guinea pig outer hair cells to electrical stimulation. In the microchamber method, an isolated cell is drawn partway into a suction pipette and stimulated transcellularly. The relative position of the cell in the microchamber is referred to as the exclusion fraction. 2. The length changes of the included and excluded segments were compared for constant sinusoidal stimulus amplitude as functions of the exclusion fraction. Both included and excluded segments showed maximal responses when the cell was excluded approximately halfway. Both segments showed smaller or absent responses when the cell was almost fully excluded or almost fully included. 3. When the cell was near to, but not at, the maximum exclusion, the included segment response amplitude was zero, whereas the excluded segment response amplitude was nonzero. In contrast, when the cell was nearly fully included, the excluded segment response amplitude was zero, but the included segment response amplitude was still detectable. A simple model of outer hair cell motility based on these results suggests that the cell has finite-resistance terminations and that the motors are restricted to a region above the nucleus and below its ciliated apex (cuticular plate). 4. The function describing length change as a function of command voltage was measured for each segment as the exclusion fraction was varied. The functions were similar at midrange exclusions (i.e., when the segments were about equal length), showing nonlinearity and saturability. The functions were strikingly different when the segment lengths were different. The effects of exclusion on the voltage to length-change functions suggested that the nonlinearity and saturability are local properties of the motility mechanism. 5. The diameter changes of both segments were examined. The segment diameter changes were always antiphasic to the length changes. This finding implies that the motility mechanism has an active antiphasic diameter component. The diameter change amplitude was a monotonically increasing function of exclusion for the included segment, and a decreasing function for the excluded segment. 6. The voltage to length-change and voltage to diameter-change functions were measured for the same cell and exclusion fraction. The voltage to diameter- change function was smaller in amplitude than the voltage to length-change function. The functions were of opposite polarity to each other, but were otherwise similar in character. Thus it is likely that the same motor mechanism is responsible for both axial and diameter deformations.

AB - 1. The microchamber method was used to examine the motile responses of isolated guinea pig outer hair cells to electrical stimulation. In the microchamber method, an isolated cell is drawn partway into a suction pipette and stimulated transcellularly. The relative position of the cell in the microchamber is referred to as the exclusion fraction. 2. The length changes of the included and excluded segments were compared for constant sinusoidal stimulus amplitude as functions of the exclusion fraction. Both included and excluded segments showed maximal responses when the cell was excluded approximately halfway. Both segments showed smaller or absent responses when the cell was almost fully excluded or almost fully included. 3. When the cell was near to, but not at, the maximum exclusion, the included segment response amplitude was zero, whereas the excluded segment response amplitude was nonzero. In contrast, when the cell was nearly fully included, the excluded segment response amplitude was zero, but the included segment response amplitude was still detectable. A simple model of outer hair cell motility based on these results suggests that the cell has finite-resistance terminations and that the motors are restricted to a region above the nucleus and below its ciliated apex (cuticular plate). 4. The function describing length change as a function of command voltage was measured for each segment as the exclusion fraction was varied. The functions were similar at midrange exclusions (i.e., when the segments were about equal length), showing nonlinearity and saturability. The functions were strikingly different when the segment lengths were different. The effects of exclusion on the voltage to length-change functions suggested that the nonlinearity and saturability are local properties of the motility mechanism. 5. The diameter changes of both segments were examined. The segment diameter changes were always antiphasic to the length changes. This finding implies that the motility mechanism has an active antiphasic diameter component. The diameter change amplitude was a monotonically increasing function of exclusion for the included segment, and a decreasing function for the excluded segment. 6. The voltage to length-change and voltage to diameter-change functions were measured for the same cell and exclusion fraction. The voltage to diameter- change function was smaller in amplitude than the voltage to length-change function. The functions were of opposite polarity to each other, but were otherwise similar in character. Thus it is likely that the same motor mechanism is responsible for both axial and diameter deformations.

UR - http://www.scopus.com/inward/record.url?scp=0027172033&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0027172033&partnerID=8YFLogxK

M3 - Article

C2 - 8410156

AN - SCOPUS:0027172033

VL - 70

SP - 549

EP - 558

JO - Journal of Neurophysiology

JF - Journal of Neurophysiology

SN - 0022-3077

IS - 2

ER -