The organization of trigeminotectal and trigeminothalamic neurons in rodents: A double-labeling study with fluorescent dyes

Laura Bruce, J. G. McHaffie, B. E. Stein

Research output: Contribution to journalArticle

82 Citations (Scopus)

Abstract

Retrogradely transported fluorescent dyes (fast blue and diamidinodihydrochloride yellow) were used to compare the distributions of trigeminofugal neurons that project to the superior colliculus and/or the thalamus in three rodent species. The objective was to determine what the projection and collateralization patterns of these trigeminofugal pathways are and whether they are similar among different species. In each anesthetized animal, one dye was injected into the superior colliculus and the other into the topographically congruent area of the thalamus. Counts of the numbers of yellow, blue, and double-labeled neurons were made throughout the trigeminal complex: principalis, pars oralis, pars interpolaris, and pars caudalis. Trigeminothalamic projections were similar in each of the rodent species studied. The densest concentration of retrogradely labeled neurons was in principalis, with substantially fewer neurons in pars interpolaris, and fewer still in pars oralis and pars caudalis. These neurons were generally small and tended to have round or fusiform somata. A common pattern was also noted among the three species for trigeminotectal neurons. Most trigeminotectal projections originated from neurons in pars interpolaris, somewhat fewer form pars oralis, and the fewest from principalis and pars caudalis. These neurons tended to be the largest in each subdivision and were often multipolar. Following paired injections of the tracers, double-labeled neurons were scattered throughout the sensory trigeminal complex and had morphologies characteristic of single-labeled trigeminotectal neurons. Although comparatively few double-labeled neurons were observed in any species, most of those seen were restricted to the ventrolateral portion of pars interpolaris, a position that corresponds to the representation of the vibrissae. These data indicate that, regardless of the rodent species, the vast majority of labeled trigeminal neurons project either to the superior colliculus or the thalamus, but not to both targets. This might be expected on the basis of the very different behavioral roles these structures play. On the other hand, a sub-population of trigeminal neurons exists (mainly in pars interpolaris) that does project to both the superior colliculus and the thalamus, perhaps because both structures require some of the same somatosensory information to perform their behavioral functions.

Original languageEnglish
Pages (from-to)315-330
Number of pages16
JournalJournal of Comparative Neurology
Volume262
Issue number3
StatePublished - 1987
Externally publishedYes

Fingerprint

Fluorescent Dyes
Rodentia
Neurons
Superior Colliculi
Thalamus
Vibrissae
Carisoprodol
Coloring Agents

All Science Journal Classification (ASJC) codes

  • Neuroscience(all)

Cite this

The organization of trigeminotectal and trigeminothalamic neurons in rodents : A double-labeling study with fluorescent dyes. / Bruce, Laura; McHaffie, J. G.; Stein, B. E.

In: Journal of Comparative Neurology, Vol. 262, No. 3, 1987, p. 315-330.

Research output: Contribution to journalArticle

@article{bb28e14e288b42c1bc9a27e3b51b5aa6,
title = "The organization of trigeminotectal and trigeminothalamic neurons in rodents: A double-labeling study with fluorescent dyes",
abstract = "Retrogradely transported fluorescent dyes (fast blue and diamidinodihydrochloride yellow) were used to compare the distributions of trigeminofugal neurons that project to the superior colliculus and/or the thalamus in three rodent species. The objective was to determine what the projection and collateralization patterns of these trigeminofugal pathways are and whether they are similar among different species. In each anesthetized animal, one dye was injected into the superior colliculus and the other into the topographically congruent area of the thalamus. Counts of the numbers of yellow, blue, and double-labeled neurons were made throughout the trigeminal complex: principalis, pars oralis, pars interpolaris, and pars caudalis. Trigeminothalamic projections were similar in each of the rodent species studied. The densest concentration of retrogradely labeled neurons was in principalis, with substantially fewer neurons in pars interpolaris, and fewer still in pars oralis and pars caudalis. These neurons were generally small and tended to have round or fusiform somata. A common pattern was also noted among the three species for trigeminotectal neurons. Most trigeminotectal projections originated from neurons in pars interpolaris, somewhat fewer form pars oralis, and the fewest from principalis and pars caudalis. These neurons tended to be the largest in each subdivision and were often multipolar. Following paired injections of the tracers, double-labeled neurons were scattered throughout the sensory trigeminal complex and had morphologies characteristic of single-labeled trigeminotectal neurons. Although comparatively few double-labeled neurons were observed in any species, most of those seen were restricted to the ventrolateral portion of pars interpolaris, a position that corresponds to the representation of the vibrissae. These data indicate that, regardless of the rodent species, the vast majority of labeled trigeminal neurons project either to the superior colliculus or the thalamus, but not to both targets. This might be expected on the basis of the very different behavioral roles these structures play. On the other hand, a sub-population of trigeminal neurons exists (mainly in pars interpolaris) that does project to both the superior colliculus and the thalamus, perhaps because both structures require some of the same somatosensory information to perform their behavioral functions.",
author = "Laura Bruce and McHaffie, {J. G.} and Stein, {B. E.}",
year = "1987",
language = "English",
volume = "262",
pages = "315--330",
journal = "Journal of Comparative Neurology",
issn = "0021-9967",
publisher = "Wiley-Liss Inc.",
number = "3",

}

TY - JOUR

T1 - The organization of trigeminotectal and trigeminothalamic neurons in rodents

T2 - A double-labeling study with fluorescent dyes

AU - Bruce, Laura

AU - McHaffie, J. G.

AU - Stein, B. E.

PY - 1987

Y1 - 1987

N2 - Retrogradely transported fluorescent dyes (fast blue and diamidinodihydrochloride yellow) were used to compare the distributions of trigeminofugal neurons that project to the superior colliculus and/or the thalamus in three rodent species. The objective was to determine what the projection and collateralization patterns of these trigeminofugal pathways are and whether they are similar among different species. In each anesthetized animal, one dye was injected into the superior colliculus and the other into the topographically congruent area of the thalamus. Counts of the numbers of yellow, blue, and double-labeled neurons were made throughout the trigeminal complex: principalis, pars oralis, pars interpolaris, and pars caudalis. Trigeminothalamic projections were similar in each of the rodent species studied. The densest concentration of retrogradely labeled neurons was in principalis, with substantially fewer neurons in pars interpolaris, and fewer still in pars oralis and pars caudalis. These neurons were generally small and tended to have round or fusiform somata. A common pattern was also noted among the three species for trigeminotectal neurons. Most trigeminotectal projections originated from neurons in pars interpolaris, somewhat fewer form pars oralis, and the fewest from principalis and pars caudalis. These neurons tended to be the largest in each subdivision and were often multipolar. Following paired injections of the tracers, double-labeled neurons were scattered throughout the sensory trigeminal complex and had morphologies characteristic of single-labeled trigeminotectal neurons. Although comparatively few double-labeled neurons were observed in any species, most of those seen were restricted to the ventrolateral portion of pars interpolaris, a position that corresponds to the representation of the vibrissae. These data indicate that, regardless of the rodent species, the vast majority of labeled trigeminal neurons project either to the superior colliculus or the thalamus, but not to both targets. This might be expected on the basis of the very different behavioral roles these structures play. On the other hand, a sub-population of trigeminal neurons exists (mainly in pars interpolaris) that does project to both the superior colliculus and the thalamus, perhaps because both structures require some of the same somatosensory information to perform their behavioral functions.

AB - Retrogradely transported fluorescent dyes (fast blue and diamidinodihydrochloride yellow) were used to compare the distributions of trigeminofugal neurons that project to the superior colliculus and/or the thalamus in three rodent species. The objective was to determine what the projection and collateralization patterns of these trigeminofugal pathways are and whether they are similar among different species. In each anesthetized animal, one dye was injected into the superior colliculus and the other into the topographically congruent area of the thalamus. Counts of the numbers of yellow, blue, and double-labeled neurons were made throughout the trigeminal complex: principalis, pars oralis, pars interpolaris, and pars caudalis. Trigeminothalamic projections were similar in each of the rodent species studied. The densest concentration of retrogradely labeled neurons was in principalis, with substantially fewer neurons in pars interpolaris, and fewer still in pars oralis and pars caudalis. These neurons were generally small and tended to have round or fusiform somata. A common pattern was also noted among the three species for trigeminotectal neurons. Most trigeminotectal projections originated from neurons in pars interpolaris, somewhat fewer form pars oralis, and the fewest from principalis and pars caudalis. These neurons tended to be the largest in each subdivision and were often multipolar. Following paired injections of the tracers, double-labeled neurons were scattered throughout the sensory trigeminal complex and had morphologies characteristic of single-labeled trigeminotectal neurons. Although comparatively few double-labeled neurons were observed in any species, most of those seen were restricted to the ventrolateral portion of pars interpolaris, a position that corresponds to the representation of the vibrissae. These data indicate that, regardless of the rodent species, the vast majority of labeled trigeminal neurons project either to the superior colliculus or the thalamus, but not to both targets. This might be expected on the basis of the very different behavioral roles these structures play. On the other hand, a sub-population of trigeminal neurons exists (mainly in pars interpolaris) that does project to both the superior colliculus and the thalamus, perhaps because both structures require some of the same somatosensory information to perform their behavioral functions.

UR - http://www.scopus.com/inward/record.url?scp=0023200912&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0023200912&partnerID=8YFLogxK

M3 - Article

C2 - 2821084

AN - SCOPUS:0023200912

VL - 262

SP - 315

EP - 330

JO - Journal of Comparative Neurology

JF - Journal of Comparative Neurology

SN - 0021-9967

IS - 3

ER -