The role of enhanced aromatic π-electron donating aptitude of the tyrosyl sidechain with respect to that of phenylalanyl in intramolecular interactions

G. A. Chass, Sándor Lovas, R. F. Murphy, I. G. Csizmadia

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

An exhaustive ab initio and DFT search for energetically stable conformers from the topologically possible set was undertaken on the N-acetyl-phenylalanyl-N-methylamide and N-acetyl-tyrosyl-N-methylamide systems. The geometries of all 81 phenylalanyl and 162 tyrosyl possible rotamers, described under the rules outlined by Multi-Dimensional Conformational Analysis (MDCA), were attempted at each of the RHF/3-21G, RHF/6-31G(d) and B3LYP/6-31G(d) levels of theory. A total of 32 and 66 stable conformational minima were found for the phenylalanyl and tyrosyl amino acid diamides, respectively, at the B3LYP/6-31G(d) level. From the tyrosyl set, 33 unique conformers emerge when the orientation of the Ai 3 dihedral angle (p-OH orientation) is disregarded. A total of 31 conformers were common to both sets and showed nearly identical geometries. The comparison of the optimized DFT geometries of the two systems showed near by perfect linear fits with R2 values of 0.9997, 0.9994, 0.9997, and 0.9996 for the φi, ψi, Ai 1, and Ai 2 dihedral angles, respectively. Relative energies of the matching 31 conformers also fitted to a linear plot with an R2 value of 0.9985. The geometric centroid of the aromatic ring in the sidechain of both systems was found to be within 4.1 Å of the H and O atoms of the peptide groups, in 21 and 2 of the conformers, respectively. None of the non-matching conformers showed any such interaction distance ≤4.1 Å.

Original languageEnglish
Pages (from-to)481-497
Number of pages17
JournalEuropean Physical Journal D
Volume20
Issue number3
DOIs
StatePublished - Sep 2002

Fingerprint

aptitude
dihedral angle
geometry
electrons
dimensional analysis
interactions
centroids
peptides
amino acids
plots
rings
atoms
energy

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)
  • Atomic and Molecular Physics, and Optics

Cite this

The role of enhanced aromatic π-electron donating aptitude of the tyrosyl sidechain with respect to that of phenylalanyl in intramolecular interactions. / Chass, G. A.; Lovas, Sándor; Murphy, R. F.; Csizmadia, I. G.

In: European Physical Journal D, Vol. 20, No. 3, 09.2002, p. 481-497.

Research output: Contribution to journalArticle

@article{bbe29e15af5a4da38440620b69b66ca1,
title = "The role of enhanced aromatic π-electron donating aptitude of the tyrosyl sidechain with respect to that of phenylalanyl in intramolecular interactions",
abstract = "An exhaustive ab initio and DFT search for energetically stable conformers from the topologically possible set was undertaken on the N-acetyl-phenylalanyl-N-methylamide and N-acetyl-tyrosyl-N-methylamide systems. The geometries of all 81 phenylalanyl and 162 tyrosyl possible rotamers, described under the rules outlined by Multi-Dimensional Conformational Analysis (MDCA), were attempted at each of the RHF/3-21G, RHF/6-31G(d) and B3LYP/6-31G(d) levels of theory. A total of 32 and 66 stable conformational minima were found for the phenylalanyl and tyrosyl amino acid diamides, respectively, at the B3LYP/6-31G(d) level. From the tyrosyl set, 33 unique conformers emerge when the orientation of the Ai 3 dihedral angle (p-OH orientation) is disregarded. A total of 31 conformers were common to both sets and showed nearly identical geometries. The comparison of the optimized DFT geometries of the two systems showed near by perfect linear fits with R2 values of 0.9997, 0.9994, 0.9997, and 0.9996 for the φi, ψi, Ai 1, and Ai 2 dihedral angles, respectively. Relative energies of the matching 31 conformers also fitted to a linear plot with an R2 value of 0.9985. The geometric centroid of the aromatic ring in the sidechain of both systems was found to be within 4.1 {\AA} of the H and O atoms of the peptide groups, in 21 and 2 of the conformers, respectively. None of the non-matching conformers showed any such interaction distance ≤4.1 {\AA}.",
author = "Chass, {G. A.} and S{\'a}ndor Lovas and Murphy, {R. F.} and Csizmadia, {I. G.}",
year = "2002",
month = "9",
doi = "10.1140/epjd/e2002-00155-6",
language = "English",
volume = "20",
pages = "481--497",
journal = "European Physical Journal D",
issn = "1434-6060",
publisher = "Springer New York",
number = "3",

}

TY - JOUR

T1 - The role of enhanced aromatic π-electron donating aptitude of the tyrosyl sidechain with respect to that of phenylalanyl in intramolecular interactions

AU - Chass, G. A.

AU - Lovas, Sándor

AU - Murphy, R. F.

AU - Csizmadia, I. G.

PY - 2002/9

Y1 - 2002/9

N2 - An exhaustive ab initio and DFT search for energetically stable conformers from the topologically possible set was undertaken on the N-acetyl-phenylalanyl-N-methylamide and N-acetyl-tyrosyl-N-methylamide systems. The geometries of all 81 phenylalanyl and 162 tyrosyl possible rotamers, described under the rules outlined by Multi-Dimensional Conformational Analysis (MDCA), were attempted at each of the RHF/3-21G, RHF/6-31G(d) and B3LYP/6-31G(d) levels of theory. A total of 32 and 66 stable conformational minima were found for the phenylalanyl and tyrosyl amino acid diamides, respectively, at the B3LYP/6-31G(d) level. From the tyrosyl set, 33 unique conformers emerge when the orientation of the Ai 3 dihedral angle (p-OH orientation) is disregarded. A total of 31 conformers were common to both sets and showed nearly identical geometries. The comparison of the optimized DFT geometries of the two systems showed near by perfect linear fits with R2 values of 0.9997, 0.9994, 0.9997, and 0.9996 for the φi, ψi, Ai 1, and Ai 2 dihedral angles, respectively. Relative energies of the matching 31 conformers also fitted to a linear plot with an R2 value of 0.9985. The geometric centroid of the aromatic ring in the sidechain of both systems was found to be within 4.1 Å of the H and O atoms of the peptide groups, in 21 and 2 of the conformers, respectively. None of the non-matching conformers showed any such interaction distance ≤4.1 Å.

AB - An exhaustive ab initio and DFT search for energetically stable conformers from the topologically possible set was undertaken on the N-acetyl-phenylalanyl-N-methylamide and N-acetyl-tyrosyl-N-methylamide systems. The geometries of all 81 phenylalanyl and 162 tyrosyl possible rotamers, described under the rules outlined by Multi-Dimensional Conformational Analysis (MDCA), were attempted at each of the RHF/3-21G, RHF/6-31G(d) and B3LYP/6-31G(d) levels of theory. A total of 32 and 66 stable conformational minima were found for the phenylalanyl and tyrosyl amino acid diamides, respectively, at the B3LYP/6-31G(d) level. From the tyrosyl set, 33 unique conformers emerge when the orientation of the Ai 3 dihedral angle (p-OH orientation) is disregarded. A total of 31 conformers were common to both sets and showed nearly identical geometries. The comparison of the optimized DFT geometries of the two systems showed near by perfect linear fits with R2 values of 0.9997, 0.9994, 0.9997, and 0.9996 for the φi, ψi, Ai 1, and Ai 2 dihedral angles, respectively. Relative energies of the matching 31 conformers also fitted to a linear plot with an R2 value of 0.9985. The geometric centroid of the aromatic ring in the sidechain of both systems was found to be within 4.1 Å of the H and O atoms of the peptide groups, in 21 and 2 of the conformers, respectively. None of the non-matching conformers showed any such interaction distance ≤4.1 Å.

UR - http://www.scopus.com/inward/record.url?scp=0036770062&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0036770062&partnerID=8YFLogxK

U2 - 10.1140/epjd/e2002-00155-6

DO - 10.1140/epjd/e2002-00155-6

M3 - Article

AN - SCOPUS:0036770062

VL - 20

SP - 481

EP - 497

JO - European Physical Journal D

JF - European Physical Journal D

SN - 1434-6060

IS - 3

ER -