Transient projections from the lateral geniculate to the posteromedial lateral suprasylvian visual cortex in kittens

Laura Bruce, B. E. Stein

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

The postnatal maturation of the projection from the lateral geniculate nucleus to the posteromedial lateral suprasylvian visual cortex (PMLS) was studied with injections of fluorescent dyes into the PMLS at various postnatal ages. Labeled neurons projecting to the PMLS were present in all laminae of the ipsilateral lateral geniculate on the day of birth. However, there was a conspicuous change in the distribution of labeled geniculo-PMLS neurons by 11 days of age: now very few labeled neurons were present in lamina A, indicating a loss of geniculo-PMLS connections. The loss of connections began at the peripheral margins of lamina A and proceeded through other laminae toward laminae C1-3. By adulthood, labeled geniculo-PMLS neurons were largely confined to laminae C1-3; they were never observed in lamina A or A1 and were rarely observed in lamina C. To determine whether the lateral geniculate neurons survived after their projections to PMLS were lost, injections of fast blue were made at 1 or 2 days postnatally and the animals were allowed long postinjection survival times. Labeled neurons were found in all lateral geniculate laminae, thereby indicating that for many neurons the loss of connections could be attributed to a loss of their axon collaterals rather than to the death of the neurons themselves. After injections of fast blue into the PMLS and diamidino yellow dihydrochloride into area 17 shortly after birth, many double-labeled neurons were present in all laminae, indicating that they have collaterals to both targets. Thus, the survival of many of the geniculo-PMLS neurons contributing to the transient geniculo-PMLS projection seems to be due to sustaining collateral projections to area 17 or other cortical targets.

Original languageEnglish
Pages (from-to)287-302
Number of pages16
JournalJournal of Comparative Neurology
Volume278
Issue number2
StatePublished - 1988

Fingerprint

Visual Cortex
Neurons
Injections
Parturition
Geniculate Bodies
Fluorescent Dyes
Axons

All Science Journal Classification (ASJC) codes

  • Neuroscience(all)

Cite this

Transient projections from the lateral geniculate to the posteromedial lateral suprasylvian visual cortex in kittens. / Bruce, Laura; Stein, B. E.

In: Journal of Comparative Neurology, Vol. 278, No. 2, 1988, p. 287-302.

Research output: Contribution to journalArticle

@article{8a06e489d3ef45fca6a7d526f50e7dd6,
title = "Transient projections from the lateral geniculate to the posteromedial lateral suprasylvian visual cortex in kittens",
abstract = "The postnatal maturation of the projection from the lateral geniculate nucleus to the posteromedial lateral suprasylvian visual cortex (PMLS) was studied with injections of fluorescent dyes into the PMLS at various postnatal ages. Labeled neurons projecting to the PMLS were present in all laminae of the ipsilateral lateral geniculate on the day of birth. However, there was a conspicuous change in the distribution of labeled geniculo-PMLS neurons by 11 days of age: now very few labeled neurons were present in lamina A, indicating a loss of geniculo-PMLS connections. The loss of connections began at the peripheral margins of lamina A and proceeded through other laminae toward laminae C1-3. By adulthood, labeled geniculo-PMLS neurons were largely confined to laminae C1-3; they were never observed in lamina A or A1 and were rarely observed in lamina C. To determine whether the lateral geniculate neurons survived after their projections to PMLS were lost, injections of fast blue were made at 1 or 2 days postnatally and the animals were allowed long postinjection survival times. Labeled neurons were found in all lateral geniculate laminae, thereby indicating that for many neurons the loss of connections could be attributed to a loss of their axon collaterals rather than to the death of the neurons themselves. After injections of fast blue into the PMLS and diamidino yellow dihydrochloride into area 17 shortly after birth, many double-labeled neurons were present in all laminae, indicating that they have collaterals to both targets. Thus, the survival of many of the geniculo-PMLS neurons contributing to the transient geniculo-PMLS projection seems to be due to sustaining collateral projections to area 17 or other cortical targets.",
author = "Laura Bruce and Stein, {B. E.}",
year = "1988",
language = "English",
volume = "278",
pages = "287--302",
journal = "Journal of Comparative Neurology",
issn = "0021-9967",
publisher = "Wiley-Liss Inc.",
number = "2",

}

TY - JOUR

T1 - Transient projections from the lateral geniculate to the posteromedial lateral suprasylvian visual cortex in kittens

AU - Bruce, Laura

AU - Stein, B. E.

PY - 1988

Y1 - 1988

N2 - The postnatal maturation of the projection from the lateral geniculate nucleus to the posteromedial lateral suprasylvian visual cortex (PMLS) was studied with injections of fluorescent dyes into the PMLS at various postnatal ages. Labeled neurons projecting to the PMLS were present in all laminae of the ipsilateral lateral geniculate on the day of birth. However, there was a conspicuous change in the distribution of labeled geniculo-PMLS neurons by 11 days of age: now very few labeled neurons were present in lamina A, indicating a loss of geniculo-PMLS connections. The loss of connections began at the peripheral margins of lamina A and proceeded through other laminae toward laminae C1-3. By adulthood, labeled geniculo-PMLS neurons were largely confined to laminae C1-3; they were never observed in lamina A or A1 and were rarely observed in lamina C. To determine whether the lateral geniculate neurons survived after their projections to PMLS were lost, injections of fast blue were made at 1 or 2 days postnatally and the animals were allowed long postinjection survival times. Labeled neurons were found in all lateral geniculate laminae, thereby indicating that for many neurons the loss of connections could be attributed to a loss of their axon collaterals rather than to the death of the neurons themselves. After injections of fast blue into the PMLS and diamidino yellow dihydrochloride into area 17 shortly after birth, many double-labeled neurons were present in all laminae, indicating that they have collaterals to both targets. Thus, the survival of many of the geniculo-PMLS neurons contributing to the transient geniculo-PMLS projection seems to be due to sustaining collateral projections to area 17 or other cortical targets.

AB - The postnatal maturation of the projection from the lateral geniculate nucleus to the posteromedial lateral suprasylvian visual cortex (PMLS) was studied with injections of fluorescent dyes into the PMLS at various postnatal ages. Labeled neurons projecting to the PMLS were present in all laminae of the ipsilateral lateral geniculate on the day of birth. However, there was a conspicuous change in the distribution of labeled geniculo-PMLS neurons by 11 days of age: now very few labeled neurons were present in lamina A, indicating a loss of geniculo-PMLS connections. The loss of connections began at the peripheral margins of lamina A and proceeded through other laminae toward laminae C1-3. By adulthood, labeled geniculo-PMLS neurons were largely confined to laminae C1-3; they were never observed in lamina A or A1 and were rarely observed in lamina C. To determine whether the lateral geniculate neurons survived after their projections to PMLS were lost, injections of fast blue were made at 1 or 2 days postnatally and the animals were allowed long postinjection survival times. Labeled neurons were found in all lateral geniculate laminae, thereby indicating that for many neurons the loss of connections could be attributed to a loss of their axon collaterals rather than to the death of the neurons themselves. After injections of fast blue into the PMLS and diamidino yellow dihydrochloride into area 17 shortly after birth, many double-labeled neurons were present in all laminae, indicating that they have collaterals to both targets. Thus, the survival of many of the geniculo-PMLS neurons contributing to the transient geniculo-PMLS projection seems to be due to sustaining collateral projections to area 17 or other cortical targets.

UR - http://www.scopus.com/inward/record.url?scp=0024237646&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0024237646&partnerID=8YFLogxK

M3 - Article

VL - 278

SP - 287

EP - 302

JO - Journal of Comparative Neurology

JF - Journal of Comparative Neurology

SN - 0021-9967

IS - 2

ER -