TY - JOUR
T1 - Use of FTIR spectroscopic imaging to identify parameters associated with fragility fracture
AU - Gourion-Arsiquaud, Samuel
AU - Faibish, Dan
AU - Myers, Elizabeth
AU - Spevak, Lyudmila
AU - Compston, Juliet
AU - Hodsman, Anthony
AU - Shane, Elizabeth
AU - Recker, Robert R.
AU - Boskey, Elizabeth R.
AU - Boskey, Adele L.
PY - 2009
Y1 - 2009
N2 - BMD does not entirely explain an individual's risk of fracture. The purpose of this study was to assess whether specific differences in spatially resolved bone composition also contribute to fracture risk. These differences were assessed using Fourier transform infrared spectroscopic imaging (FTIRI) and analyzed through multiple logistic regression. Models were constructed to determine whether FTIRI measured parameters describing mineral content, mineral crystal size and perfection, and collagen maturity were associated with fracture. Cortical and cancellous bone were independently evaluated in iliac crest biopsies from 54 women (32 with fractures, 22 without) who had significantly different spine but not hip BMDs and ranged in age from 30 to 83 yr. The parameters that were significantly associated with fracture in the model were cortical and cancellous collagen maturity (increased with increased fracture risk), cortical mineral/ matrix ratio (higher with increased fracture risk), and cancellous crystallinity (increased with increased fracture risk). As expected, because of its correlation with cortical but not cancellous bone density, hip BMD was significantly associated with fracture risk in the cortical but not the cancellous model. This research suggests that additional parameters associated with fracture risk should be targeted for therapies for osteoporosis.
AB - BMD does not entirely explain an individual's risk of fracture. The purpose of this study was to assess whether specific differences in spatially resolved bone composition also contribute to fracture risk. These differences were assessed using Fourier transform infrared spectroscopic imaging (FTIRI) and analyzed through multiple logistic regression. Models were constructed to determine whether FTIRI measured parameters describing mineral content, mineral crystal size and perfection, and collagen maturity were associated with fracture. Cortical and cancellous bone were independently evaluated in iliac crest biopsies from 54 women (32 with fractures, 22 without) who had significantly different spine but not hip BMDs and ranged in age from 30 to 83 yr. The parameters that were significantly associated with fracture in the model were cortical and cancellous collagen maturity (increased with increased fracture risk), cortical mineral/ matrix ratio (higher with increased fracture risk), and cancellous crystallinity (increased with increased fracture risk). As expected, because of its correlation with cortical but not cancellous bone density, hip BMD was significantly associated with fracture risk in the cortical but not the cancellous model. This research suggests that additional parameters associated with fracture risk should be targeted for therapies for osteoporosis.
UR - http://www.scopus.com/inward/record.url?scp=72749128069&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=72749128069&partnerID=8YFLogxK
U2 - 10.1359/jbmr.090414
DO - 10.1359/jbmr.090414
M3 - Article
C2 - 19419303
AN - SCOPUS:72749128069
VL - 24
SP - 1565
EP - 1571
JO - Journal of Bone and Mineral Research
JF - Journal of Bone and Mineral Research
SN - 0884-0431
IS - 9
ER -