Viscoelastic Properties of Differentiating Blood Cells Are Fate- and Function-Dependent

Andrew E. Ekpenyong, Graeme Whyte, Kevin Chalut, Stefano Pagliara, Franziska Lautenschläger, Christine Fiddler, Stephan Paschke, Ulrich F. Keyser, Edwin R. Chilvers, Jochen Guck

Research output: Contribution to journalArticle

101 Scopus citations

Abstract

Although cellular mechanical properties are known to alter during stem cell differentiation, understanding of the functional relevance of such alterations is incomplete. Here, we show that during the course of differentiation of human myeloid precursor cells into three different lineages, the cells alter their viscoelastic properties, measured using an optical stretcher, to suit their ultimate fate and function. Myeloid cells circulating in blood have to be advected through constrictions in blood vessels, engendering the need for compliance at short time-scales (minutes), compared to undifferentiated cells. These findings suggest that reduction in steady-state viscosity is a physiological adaptation for enhanced migration through tissues. Our results indicate that the material properties of cells define their function, can be used as a cell differentiation marker and could serve as target for novel therapies.

Original languageEnglish (US)
Article numbere45237
JournalPloS one
Volume7
Issue number9
DOIs
StatePublished - Sep 27 2012
Externally publishedYes

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Cite this

Ekpenyong, A. E., Whyte, G., Chalut, K., Pagliara, S., Lautenschläger, F., Fiddler, C., Paschke, S., Keyser, U. F., Chilvers, E. R., & Guck, J. (2012). Viscoelastic Properties of Differentiating Blood Cells Are Fate- and Function-Dependent. PloS one, 7(9), [e45237]. https://doi.org/10.1371/journal.pone.0045237